早教吧作业答案频道 -->数学-->
在平面直角坐标系x0y中,抛物线y=x2+bx+c与X轴交于A、B两点(点A在点B的左侧)与Y轴交于点C,点B的坐标为(3,0)在平面直角坐标系x0y中,抛物线y=x2+bx+c与X轴交于A、B两点(点A在点B的左侧)与Y轴交于点C
题目详情
在平面直角坐标系x0y中,抛物线y=x2+bx+c与X轴交于A、B两点(点A在点B的左侧)与Y轴交于点C,点B的坐标为(3,0)
在平面直角坐标系x0y中,抛物线y=x2+bx+c与X轴交于A、B两点(点A在点B的左侧)
与Y轴交于点C,点B的坐标为(3,0),将直线y=kx沿Y轴向上平移3个单位长度后恰好经过B、C两点.
⑴求直线BC及抛物线的解析式:
⑶连接CD,求角OCA与角OCD两角和的度数.
⑵设抛物线的顶点为D,点P在抛物线的对称轴上,且角APD=角ACB,求点P的坐标:
在平面直角坐标系x0y中,抛物线y=x2+bx+c与X轴交于A、B两点(点A在点B的左侧)
与Y轴交于点C,点B的坐标为(3,0),将直线y=kx沿Y轴向上平移3个单位长度后恰好经过B、C两点.
⑴求直线BC及抛物线的解析式:
⑶连接CD,求角OCA与角OCD两角和的度数.
⑵设抛物线的顶点为D,点P在抛物线的对称轴上,且角APD=角ACB,求点P的坐标:
▼优质解答
答案和解析
:(1)∵y=kx沿y轴向上平移3个单位长度后经过y轴上的点C,
∴C(0,3).
设直线BC的解析式为y=kx+3.
∵B(3,0)在直线BC上,
∴3k+3=0.
解得k=-1.
∴直线BC的解析式为y=-x+3.
∵抛物线y=x2+bx+c过点B,C,
∴
9+3b+c=0c=3
解得
b=-4c=3
,
∴抛物线的解析式为y=x2-4x+3.
(2)由y=x2-4x+3.
可得D(2,-1),A(1,0).
∴OB=3,OC=3,OA=1,AB=2.
可得△OBC是等腰直角三角形,
∴∠OBC=45°,CB=3
2
.
如图1,设抛物线对称轴与x轴交于点F,
∴AF=
12
AB=1.
过点A作AE⊥BC于点E.
∴∠AEB=90度.
可得BE=AE=
2
,CE=2
2
.
在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF,
∴△AEC∽△AFP.
∴
AEAF
=
CEPF
,
21
=
2
2PF
.
解得PF=2.∵点P在抛物线的对称轴上,
∴点P的坐标为(2,2)或(2,-2)
如图2,作点A(1,0)关于y轴的对称点A',则A'(-1,0).
连接A'C,A'D,
可得A'C=AC=10,∠OCA'=∠OCA.
由勾股定理可得CD2=20,A'D2=10.
又∵A'C2=10,
∴A'D2+A'C2=CD2.
∴△A'DC是等腰直角三角形,∠CA'D=90°,
∴∠DCA'=45度.
∴∠OCA'+∠OCD=45度.
∴∠OCA+∠OCD=45度.
即∠OCA与∠OCD两角和的度数为45度
∴C(0,3).
设直线BC的解析式为y=kx+3.
∵B(3,0)在直线BC上,
∴3k+3=0.
解得k=-1.
∴直线BC的解析式为y=-x+3.
∵抛物线y=x2+bx+c过点B,C,
∴
9+3b+c=0c=3
解得
b=-4c=3
,
∴抛物线的解析式为y=x2-4x+3.
(2)由y=x2-4x+3.
可得D(2,-1),A(1,0).
∴OB=3,OC=3,OA=1,AB=2.
可得△OBC是等腰直角三角形,
∴∠OBC=45°,CB=3
2
.
如图1,设抛物线对称轴与x轴交于点F,
∴AF=
12
AB=1.
过点A作AE⊥BC于点E.
∴∠AEB=90度.
可得BE=AE=
2
,CE=2
2
.
在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF,
∴△AEC∽△AFP.
∴
AEAF
=
CEPF
,
21
=
2
2PF
.
解得PF=2.∵点P在抛物线的对称轴上,
∴点P的坐标为(2,2)或(2,-2)
如图2,作点A(1,0)关于y轴的对称点A',则A'(-1,0).
连接A'C,A'D,
可得A'C=AC=10,∠OCA'=∠OCA.
由勾股定理可得CD2=20,A'D2=10.
又∵A'C2=10,
∴A'D2+A'C2=CD2.
∴△A'DC是等腰直角三角形,∠CA'D=90°,
∴∠DCA'=45度.
∴∠OCA'+∠OCD=45度.
∴∠OCA+∠OCD=45度.
即∠OCA与∠OCD两角和的度数为45度
看了 在平面直角坐标系x0y中,抛...的网友还看了以下:
一道数学题:如图,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.过点A作AP∥BC交 2020-05-13 …
自主学习,请阅读下列解题过程.解一元二次不等式:x2-5x>0.设x2-5x=0,解得:x1=0, 2020-05-17 …
求由曲线y=x2+2与y=3x,x=0,x=2所围成的平面图形的面积. 2020-06-06 …
下列说法错误的是()A.一次函数y=-2x+3,y随x的增大而减小,B.反比例函数y=-2x中,y 2020-07-12 …
如图,由曲线y=x2+4与直线y=5x,x=0,x=4所围成平面图形的面积. 2020-07-18 …
如图,在平面直角坐标系中,抛物线y=-x2+3x与x轴交于O、A两点,与直线y=x交于O、B两点, 2020-07-26 …
下列各组函数表示相同函数的是.(1)y=x与y=x2(2)y=x与y=(x)2(3)y=3x3与y= 2020-10-31 …
下列命题正确的是()A.接近0的实数可以构成集合B.R={实数集}C.集合{y|y=x2-1}与集合 2020-11-28 …
求∯seyx2+z2dxdz,其中S为由曲面y=x2+z2与平面y=1,y=2所围立体表面的外侧.并 2020-12-13 …
高中数学问题一己知曲线y=x2-1与y=1+x3在x=Z处的切线互相垂直求Z的值己知a=(1-t.. 2021-01-12 …