早教吧作业答案频道 -->数学-->
在平面直角坐标系x0y中,抛物线y=x2+bx+c与X轴交于A、B两点(点A在点B的左侧)与Y轴交于点C,点B的坐标为(3,0)在平面直角坐标系x0y中,抛物线y=x2+bx+c与X轴交于A、B两点(点A在点B的左侧)与Y轴交于点C
题目详情
在平面直角坐标系x0y中,抛物线y=x2+bx+c与X轴交于A、B两点(点A在点B的左侧)与Y轴交于点C,点B的坐标为(3,0)
在平面直角坐标系x0y中,抛物线y=x2+bx+c与X轴交于A、B两点(点A在点B的左侧)
与Y轴交于点C,点B的坐标为(3,0),将直线y=kx沿Y轴向上平移3个单位长度后恰好经过B、C两点.
⑴求直线BC及抛物线的解析式:
⑶连接CD,求角OCA与角OCD两角和的度数.
⑵设抛物线的顶点为D,点P在抛物线的对称轴上,且角APD=角ACB,求点P的坐标:
在平面直角坐标系x0y中,抛物线y=x2+bx+c与X轴交于A、B两点(点A在点B的左侧)
与Y轴交于点C,点B的坐标为(3,0),将直线y=kx沿Y轴向上平移3个单位长度后恰好经过B、C两点.
⑴求直线BC及抛物线的解析式:
⑶连接CD,求角OCA与角OCD两角和的度数.
⑵设抛物线的顶点为D,点P在抛物线的对称轴上,且角APD=角ACB,求点P的坐标:
▼优质解答
答案和解析
:(1)∵y=kx沿y轴向上平移3个单位长度后经过y轴上的点C,
∴C(0,3).
设直线BC的解析式为y=kx+3.
∵B(3,0)在直线BC上,
∴3k+3=0.
解得k=-1.
∴直线BC的解析式为y=-x+3.
∵抛物线y=x2+bx+c过点B,C,
∴
9+3b+c=0c=3
解得
b=-4c=3
,
∴抛物线的解析式为y=x2-4x+3.
(2)由y=x2-4x+3.
可得D(2,-1),A(1,0).
∴OB=3,OC=3,OA=1,AB=2.
可得△OBC是等腰直角三角形,
∴∠OBC=45°,CB=3
2
.
如图1,设抛物线对称轴与x轴交于点F,
∴AF=
12
AB=1.
过点A作AE⊥BC于点E.
∴∠AEB=90度.
可得BE=AE=
2
,CE=2
2
.
在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF,
∴△AEC∽△AFP.
∴
AEAF
=
CEPF
,
21
=
2
2PF
.
解得PF=2.∵点P在抛物线的对称轴上,
∴点P的坐标为(2,2)或(2,-2)
如图2,作点A(1,0)关于y轴的对称点A',则A'(-1,0).
连接A'C,A'D,
可得A'C=AC=10,∠OCA'=∠OCA.
由勾股定理可得CD2=20,A'D2=10.
又∵A'C2=10,
∴A'D2+A'C2=CD2.
∴△A'DC是等腰直角三角形,∠CA'D=90°,
∴∠DCA'=45度.
∴∠OCA'+∠OCD=45度.
∴∠OCA+∠OCD=45度.
即∠OCA与∠OCD两角和的度数为45度
∴C(0,3).
设直线BC的解析式为y=kx+3.
∵B(3,0)在直线BC上,
∴3k+3=0.
解得k=-1.
∴直线BC的解析式为y=-x+3.
∵抛物线y=x2+bx+c过点B,C,
∴
9+3b+c=0c=3
解得
b=-4c=3
,
∴抛物线的解析式为y=x2-4x+3.
(2)由y=x2-4x+3.
可得D(2,-1),A(1,0).
∴OB=3,OC=3,OA=1,AB=2.
可得△OBC是等腰直角三角形,
∴∠OBC=45°,CB=3
2
.
如图1,设抛物线对称轴与x轴交于点F,
∴AF=
12
AB=1.
过点A作AE⊥BC于点E.
∴∠AEB=90度.
可得BE=AE=
2
,CE=2
2
.
在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF,
∴△AEC∽△AFP.
∴
AEAF
=
CEPF
,
21
=
2
2PF
.
解得PF=2.∵点P在抛物线的对称轴上,
∴点P的坐标为(2,2)或(2,-2)
如图2,作点A(1,0)关于y轴的对称点A',则A'(-1,0).
连接A'C,A'D,
可得A'C=AC=10,∠OCA'=∠OCA.
由勾股定理可得CD2=20,A'D2=10.
又∵A'C2=10,
∴A'D2+A'C2=CD2.
∴△A'DC是等腰直角三角形,∠CA'D=90°,
∴∠DCA'=45度.
∴∠OCA'+∠OCD=45度.
∴∠OCA+∠OCD=45度.
即∠OCA与∠OCD两角和的度数为45度
看了 在平面直角坐标系x0y中,抛...的网友还看了以下:
已知数轴上有A、B两点,A、B两点之间的距离为1,点A与原点的距离为4,求所所有满足条件的点B与原 2020-05-22 …
抛物线y=x2+bx+c(b小于等于0)的图像与x轴交于A`B两点,与y轴交于C点,其中点A坐标为 2020-06-29 …
若直角坐标系内A,B两点满足:(1)点A,B都在f(x)的图象上;(2)点A,B关于原点对称,则称 2020-07-03 …
过椭圆C:x26+y22=1的右焦点F作斜率为k(k>0)的直线l与椭圆交于A、B两点,且坐标原点 2020-07-19 …
如图所示,已知△AOB中,点C与点B关于点A对称,OD=2DB,DC和OA交于点E,设OA=a,O 2020-07-24 …
已知:在直角坐标系中,点C的坐标为(0,-2),点A与点B在x轴上,且点A与点B的横坐标是方程x2 2020-08-01 …
如图,直线y=kx+c与抛物线y=ax2+bx+c的图象都经过y轴上的D点,抛物线与x轴交于A、B两 2020-11-01 …
已知点a(a,b)与点b(c,d)如果点a,b关于y轴对称,那么a,b,c,d因满足什么条件 2020-11-11 …
已知双曲线与直线相交于A、B两点。第一象限上的点M(m,n)(在A点左侧)是双曲线上的动点,过点B作 2020-11-27 …
如果点m(3a-1,5+b)与点(b-2,a)关于原点对称,那么a=?,b=? 2021-02-14 …