早教吧作业答案频道 -->数学-->
在平面直角坐标系x0y中,抛物线y=x2+bx+c与X轴交于A、B两点(点A在点B的左侧)与Y轴交于点C,点B的坐标为(3,0)在平面直角坐标系x0y中,抛物线y=x2+bx+c与X轴交于A、B两点(点A在点B的左侧)与Y轴交于点C
题目详情
在平面直角坐标系x0y中,抛物线y=x2+bx+c与X轴交于A、B两点(点A在点B的左侧)与Y轴交于点C,点B的坐标为(3,0)
在平面直角坐标系x0y中,抛物线y=x2+bx+c与X轴交于A、B两点(点A在点B的左侧)
与Y轴交于点C,点B的坐标为(3,0),将直线y=kx沿Y轴向上平移3个单位长度后恰好经过B、C两点.
⑴求直线BC及抛物线的解析式:
⑶连接CD,求角OCA与角OCD两角和的度数.
⑵设抛物线的顶点为D,点P在抛物线的对称轴上,且角APD=角ACB,求点P的坐标:
在平面直角坐标系x0y中,抛物线y=x2+bx+c与X轴交于A、B两点(点A在点B的左侧)
与Y轴交于点C,点B的坐标为(3,0),将直线y=kx沿Y轴向上平移3个单位长度后恰好经过B、C两点.
⑴求直线BC及抛物线的解析式:
⑶连接CD,求角OCA与角OCD两角和的度数.
⑵设抛物线的顶点为D,点P在抛物线的对称轴上,且角APD=角ACB,求点P的坐标:
▼优质解答
答案和解析
:(1)∵y=kx沿y轴向上平移3个单位长度后经过y轴上的点C,
∴C(0,3).
设直线BC的解析式为y=kx+3.
∵B(3,0)在直线BC上,
∴3k+3=0.
解得k=-1.
∴直线BC的解析式为y=-x+3.
∵抛物线y=x2+bx+c过点B,C,
∴
9+3b+c=0c=3
解得
b=-4c=3
,
∴抛物线的解析式为y=x2-4x+3.
(2)由y=x2-4x+3.
可得D(2,-1),A(1,0).
∴OB=3,OC=3,OA=1,AB=2.
可得△OBC是等腰直角三角形,
∴∠OBC=45°,CB=3
2
.
如图1,设抛物线对称轴与x轴交于点F,
∴AF=
12
AB=1.
过点A作AE⊥BC于点E.
∴∠AEB=90度.
可得BE=AE=
2
,CE=2
2
.
在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF,
∴△AEC∽△AFP.
∴
AEAF
=
CEPF
,
21
=
2
2PF
.
解得PF=2.∵点P在抛物线的对称轴上,
∴点P的坐标为(2,2)或(2,-2)
如图2,作点A(1,0)关于y轴的对称点A',则A'(-1,0).
连接A'C,A'D,
可得A'C=AC=10,∠OCA'=∠OCA.
由勾股定理可得CD2=20,A'D2=10.
又∵A'C2=10,
∴A'D2+A'C2=CD2.
∴△A'DC是等腰直角三角形,∠CA'D=90°,
∴∠DCA'=45度.
∴∠OCA'+∠OCD=45度.
∴∠OCA+∠OCD=45度.
即∠OCA与∠OCD两角和的度数为45度
∴C(0,3).
设直线BC的解析式为y=kx+3.
∵B(3,0)在直线BC上,
∴3k+3=0.
解得k=-1.
∴直线BC的解析式为y=-x+3.
∵抛物线y=x2+bx+c过点B,C,
∴
9+3b+c=0c=3
解得
b=-4c=3
,
∴抛物线的解析式为y=x2-4x+3.
(2)由y=x2-4x+3.
可得D(2,-1),A(1,0).
∴OB=3,OC=3,OA=1,AB=2.
可得△OBC是等腰直角三角形,
∴∠OBC=45°,CB=3
2
.
如图1,设抛物线对称轴与x轴交于点F,
∴AF=
12
AB=1.
过点A作AE⊥BC于点E.
∴∠AEB=90度.
可得BE=AE=
2
,CE=2
2
.
在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF,
∴△AEC∽△AFP.
∴
AEAF
=
CEPF
,
21
=
2
2PF
.
解得PF=2.∵点P在抛物线的对称轴上,
∴点P的坐标为(2,2)或(2,-2)
如图2,作点A(1,0)关于y轴的对称点A',则A'(-1,0).
连接A'C,A'D,
可得A'C=AC=10,∠OCA'=∠OCA.
由勾股定理可得CD2=20,A'D2=10.
又∵A'C2=10,
∴A'D2+A'C2=CD2.
∴△A'DC是等腰直角三角形,∠CA'D=90°,
∴∠DCA'=45度.
∴∠OCA'+∠OCD=45度.
∴∠OCA+∠OCD=45度.
即∠OCA与∠OCD两角和的度数为45度
看了 在平面直角坐标系x0y中,抛...的网友还看了以下:
如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,-1)、B(-1,1)、C(0,- 2020-05-13 …
已知正三角形ABC的顶点A位于坐标原点 顶点B与C均在抛物线Y^2=2X上 求三角形ABC边长 2020-05-16 …
关于坐标系平移的1个题在直角坐标系中平移坐标轴,把原点O(0,0)移到(2,-5),点A在新坐标系 2020-06-06 …
已知直线y=33x与直线y=kx+b交于点A(m,n)(m>0),点B在直线y=33x上且与点A关 2020-06-14 …
已知直线y=x与直线y=kx+b交于点A(m,n)(m>0),点B在直线y=x上且与点A关于坐标原 2020-06-14 …
(2008•扬州)在平面直角坐标系中,将点A(1,2)的横坐标乘以-1,纵坐标不变,得到点A′,则 2020-07-31 …
1、33.5万亿元用科学计数法表示为().A、3.35*10^13元B、3.35*10^9元C、3 2020-08-01 …
在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C.(1)若A点的坐标为 2020-08-01 …
如图,已知在平面直角坐标系中,点A的坐标为(-2,0),点B是点A关于原点的对称点,P是函数图象上 2020-08-02 …
在平面直角坐标系xoy中,过定点c(0,p)作直线与抛物线y^2=2py(p>0)交于a,b两点, 2020-08-02 …