早教吧作业答案频道 -->数学-->
在椭圆x^2+4y^2=4上求一点,使其到平面2x+3y-6=0的距离最短
题目详情
在椭圆x^2+4y^2=4上求一点,使其到平面2x+3y-6=0的距离最短
▼优质解答
答案和解析
思路:
1.设一条直线为Ax+By+c=0( 这条直线的斜率与题目中直线的斜率一样,因为只有斜率一样,直线才会平行,进而谈论距离问题,不平行的两条直线是没有距离的)
2.联立Ax+By+c=0和椭圆方程,得到二次函数的判别式,既△=0(直线与椭圆相切),求出c,这样就有可以求得两条直线的距离,有最大距离也有最小距离.
3.如果求最大值时的坐标,再利用△=0,就出最大值的坐标和最小值的坐标.
补充:一般在圆锥曲线中求与一条直线的最大距离或者最小距离,方法就是我上面所说的,要设与已知直线平行的直线,再利用直线与图形相切,求出未知数.
直线所在的平面不就是椭圆所在的平面吗,再说了,直线和椭圆不都是在直角坐标系里了吗?还考虑平面吗?
1.设一条直线为Ax+By+c=0( 这条直线的斜率与题目中直线的斜率一样,因为只有斜率一样,直线才会平行,进而谈论距离问题,不平行的两条直线是没有距离的)
2.联立Ax+By+c=0和椭圆方程,得到二次函数的判别式,既△=0(直线与椭圆相切),求出c,这样就有可以求得两条直线的距离,有最大距离也有最小距离.
3.如果求最大值时的坐标,再利用△=0,就出最大值的坐标和最小值的坐标.
补充:一般在圆锥曲线中求与一条直线的最大距离或者最小距离,方法就是我上面所说的,要设与已知直线平行的直线,再利用直线与图形相切,求出未知数.
直线所在的平面不就是椭圆所在的平面吗,再说了,直线和椭圆不都是在直角坐标系里了吗?还考虑平面吗?
看了 在椭圆x^2+4y^2=4上...的网友还看了以下:
已知椭圆方程x^2/4+y^2=1,在椭圆上找一点M,是椭圆到直线l:3x+4y-12=0的距离最大 2020-03-30 …
已知椭圆C的焦点在x轴上,中心为坐标原点.椭圆C上的点到焦点的最远距离是6,最近距离是2.求(1) 2020-05-13 …
椭圆C的中心为坐标原点O,焦点在x轴上,离心率e=32,且椭圆过点(2,0).(1)求椭圆方程;( 2020-05-15 …
x^2/a^2+y^2/b^2=1(a>b>0),F1,F2分别为椭圆上的左右焦点,A为椭圆上的上 2020-05-15 …
已知椭圆C的中心在坐标原点,焦点F1,F2在x轴上,焦距为2,并且椭圆C上...已知椭圆C的中心在 2020-05-15 …
椭圆x^2/a^2+y^2/b^2=1上点P到点Q(0,3/2)的最大距离为根号7,离心率为根号3 2020-06-12 …
设动点A,B在椭圆9x^2+16y^2=144上,椭圆中心为原点O,且OA垂直OB,求O到弦AB的 2020-07-18 …
请问:如图,已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号2/2,以该椭圆 2020-07-21 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的右焦点为F2(根号2,0),离心率为e= 2020-07-26 …
如图,已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号2/2,以该椭圆上的点 2020-08-01 …