早教吧作业答案频道 -->数学-->
利用椭圆标准方程的推导过程讨论椭圆准线的存在性
题目详情
利用椭圆标准方程的推导过程讨论椭圆准线的存在性
▼优质解答
答案和解析
一定存在准线 x=±a^2/c吧...
"利用椭圆标准方程的推导过程" 首先需要已知两定点(±c,0),到两定点的长度2a
所以 根号下[(x-c)²+y²] + 根号下[(x+c)²+y²] =2a
移项 根号下[(x-c)²+y²] = 2a-根号下[(x+c)²+y²]
平方 (x-c)²+y²=4a²+(x+c)²+y²-4a·根号下[(x+c)²+y²]
化简 a·根号下[(x+c)²+y²] =a²+xc
根号下[(x+c)²+y²] =(c/a)·[x-(-a^2/c)]
显然(x+c)²+y²大于0,否则椭圆过焦点,矛盾
所以 点到(-c,0)的距离 / 点到直线x=-a^2/c的距离 为定值 c/a
因此直线x=-a^2/c 为椭圆的一条准线
同理,最初移项时如果是根号下[(x+c)²+y²] = 2a-根号下[(x-c)²+y²]
出来的就是 点到(c,0)的距离 / 点到直线x=a^2/c的距离 为定值 c/a
所以 椭圆存在2条准线x=±a^2/c
"利用椭圆标准方程的推导过程" 首先需要已知两定点(±c,0),到两定点的长度2a
所以 根号下[(x-c)²+y²] + 根号下[(x+c)²+y²] =2a
移项 根号下[(x-c)²+y²] = 2a-根号下[(x+c)²+y²]
平方 (x-c)²+y²=4a²+(x+c)²+y²-4a·根号下[(x+c)²+y²]
化简 a·根号下[(x+c)²+y²] =a²+xc
根号下[(x+c)²+y²] =(c/a)·[x-(-a^2/c)]
显然(x+c)²+y²大于0,否则椭圆过焦点,矛盾
所以 点到(-c,0)的距离 / 点到直线x=-a^2/c的距离 为定值 c/a
因此直线x=-a^2/c 为椭圆的一条准线
同理,最初移项时如果是根号下[(x+c)²+y²] = 2a-根号下[(x-c)²+y²]
出来的就是 点到(c,0)的距离 / 点到直线x=a^2/c的距离 为定值 c/a
所以 椭圆存在2条准线x=±a^2/c
看了 利用椭圆标准方程的推导过程讨...的网友还看了以下:
已知椭C:x2a2+y2b2=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点 2020-05-14 …
已知椭圆方程3(x^2)+4(y^2)-12=0若直线l:y=mx+m(k≠0),与椭圆交于不同两 2020-05-15 …
一直椭圆x^2+y^/2=1过点A(-根号3,0)的直线l交椭圆于M、N两点,以MN为直径的圆恰过 2020-05-23 …
已知椭圆和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A,B,(Ⅰ)(ⅰ)若 2020-06-21 …
已知点P(1,3√5/2)在椭圆:x²/a²+y²/b²=1(a>b>0)上,且该椭圆的离心率为1 2020-06-30 …
已知椭圆和圆O:,过椭圆上一点P引圆O的两条切线,切点分别为A,B。(1)(ⅰ)若圆O过椭圆的两个 2020-07-31 …
已知椭圆和圆:,过椭圆上一点P引圆O的两条切线,切点分别为A,B.(1)(ⅰ)若圆O过椭圆的两个焦 2020-07-31 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)和圆O:x^2+y^2=b^2,过椭圆上一 2020-07-31 …
求解析几何中的轨迹方程过椭圆上一点P,引短轴的平行线,又作P点的切线,求过椭圆中心垂直於切线的直线 2020-08-02 …
已知直线l:y=x+k经过椭圆C:x2a2+y2a2-1=1,(a>1)的右焦点F2,且与椭圆C交于 2021-01-10 …