早教吧作业答案频道 -->数学-->
一直椭圆x^2+y^/2=1过点A(-根号3,0)的直线l交椭圆于M、N两点,以MN为直径的圆恰过椭圆中心,求直线方程
题目详情
一直椭圆x^2+y^/2=1过点A(-根号3,0)的直线l交椭圆于M、N两点,以MN为直径的圆恰过椭圆中心,求直线方程
▼优质解答
答案和解析
设直线 l 的斜率为k,则:直线 l 的方程是y=k(x+√3).
联立x^2+y^2/2=1、y=k(x+√3),消去y,得:x^2+k^2(x+√3)^2/2=1,
∴2x^2+k^2x^2+2√3k^2x+3k^2-2=0,∴(2+k^2)x^2+2√3k^2x+3k^2-2=0.
∵M、N在直线y=k(x+√3)上,
∴可令M、N的坐标分别是(m,km+√3k)、(n,kn+√3k).
显然,m、n是方程(2+k^2)x^2+2√3k^2x+3k^2-2=0的根,∴由韦达定理,有:
m+n=-2√3k^2/(2+k^2)、mn=(3k^2-2)/(2+k^2).
向量OM=(m,km+√3k)、向量ON=(n,kn+√3k).
∵以MN为直径的圆过椭圆的中心,而椭圆的中心是坐标原点O,∴OM⊥ON.
∴向量OM·向量ON=0,
∴mn+(km+√3k)(kn+√3k)=0,
∴mn+k^2mn+√3k^2(m+n)+3k^2=0,
∴(1+k^2)(3k^2-2)/(2+k^2)-√3k^2[2√3k^2/(2+k^2)]+3k^2=0,
∴(1+k^2)(3k^2-2)-6k^4+3k^2(2+k^2)=0,
∴3k^2-2+3k^4-2k^2-6k^4+6k^2+3k^4=0,
∴7k^2=2,∴k=√14/7,或k=-√14/7.
∴满足条件的直线 l 的方程有两个,分别是:
y=(√14/7)(x+√3)、y=-(√14/7)(x+√3).
联立x^2+y^2/2=1、y=k(x+√3),消去y,得:x^2+k^2(x+√3)^2/2=1,
∴2x^2+k^2x^2+2√3k^2x+3k^2-2=0,∴(2+k^2)x^2+2√3k^2x+3k^2-2=0.
∵M、N在直线y=k(x+√3)上,
∴可令M、N的坐标分别是(m,km+√3k)、(n,kn+√3k).
显然,m、n是方程(2+k^2)x^2+2√3k^2x+3k^2-2=0的根,∴由韦达定理,有:
m+n=-2√3k^2/(2+k^2)、mn=(3k^2-2)/(2+k^2).
向量OM=(m,km+√3k)、向量ON=(n,kn+√3k).
∵以MN为直径的圆过椭圆的中心,而椭圆的中心是坐标原点O,∴OM⊥ON.
∴向量OM·向量ON=0,
∴mn+(km+√3k)(kn+√3k)=0,
∴mn+k^2mn+√3k^2(m+n)+3k^2=0,
∴(1+k^2)(3k^2-2)/(2+k^2)-√3k^2[2√3k^2/(2+k^2)]+3k^2=0,
∴(1+k^2)(3k^2-2)-6k^4+3k^2(2+k^2)=0,
∴3k^2-2+3k^4-2k^2-6k^4+6k^2+3k^4=0,
∴7k^2=2,∴k=√14/7,或k=-√14/7.
∴满足条件的直线 l 的方程有两个,分别是:
y=(√14/7)(x+√3)、y=-(√14/7)(x+√3).
看了 一直椭圆x^2+y^/2=1...的网友还看了以下:
反比例函数:如图所示,已知双曲线y=x分之k与直线y=4分之1x相交于AB两点,在第一象上的点M( 2020-06-20 …
已知抛物线C:y2=2px(p>0)的焦点F和椭圆的右焦点重合,直线过点F交抛物线于A、B两点.( 2020-06-21 …
已知正方形ABCD如图所示,连接其对角线AC,∠BCA的平分线CF交AB于点F,过点B作BM⊥CF 2020-06-23 …
初三反比例函数 若点D的坐标是(-8,0),求A、B两点坐标及k的值已知双曲线y=k/x与直线y= 2020-06-27 …
已知正方形ABCD如图所示,连接其对角线AC,∠BCA的平分线CF交AB于点F,过点B作BM⊥CF 2020-07-22 …
如图,已知抛物线m:y=ax2-6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n: 2020-07-25 …
设A与B的交集为空集,M={X|X属于A},N={Y|Y属于B},则A.M与N的交集为空集B.M与 2020-07-30 …
在平面直角坐标系中,半径为5的圆N于y轴切于T(0,4)于X轴交于A,B,且A(2,0)(1)直线T 2020-11-04 …
(2009•荆州)如图,AB是半圆O的直径,C为半圆上一点,N是线段BC上一点(不与B﹑C重合),过 2020-11-12 …
已知双曲线与直线相交于A、B两点。第一象限上的点M(m,n)(在A点左侧)是双曲线上的动点,过点B作 2020-11-27 …