早教吧作业答案频道 -->数学-->
设函数f(u)具有二阶导数,而z=f((e^x)*sin(y))满足方程d^2(z)/d^2(x^2)+d^2(z)/d(y^2)=e^(2*x)*z,求f(u).令u=e^x*siny,则z=f(u)∂z/∂x=∂z/∂u*∂u/∂x=f'(u)*e^x*siny=uf'(u),∂²z/∂x²=∂(u
题目详情
设函数f(u)具有二阶导数,而z=f((e^x)*sin(y))满足方程d^2(z)/d^2(x^2)+d^2(z)/d(y^2)=e^(2*x)*z,求f(u).
令u=e^x*siny,则z=f(u)
∂z/∂x=∂z/∂u*∂u/∂x=f'(u)*e^x*siny=uf'(u),∂²z/∂x²=∂(uf'(u))/∂x=uf'(u)+u²f''(u)
∂z/∂y=f'(u)*e^x*cosy,∂²z/∂y²=∂(f'(u)*e^x*cosy)/∂y=f''(u)*e^(2x)*cos²y-f'(u)*e^x*siny=f''(u)*e^(2x)*cos²y-uf'(u)
故∂²z/∂x²+∂²z/∂y²=uf'(u)+u²f''(u)+f''(u)*e^(2x)*cos²y-uf'(u)=u²f''(u)+f''(u)*e^(2x)*cos²y=f''(u)*[e^(2x)*sin²y+e^(2x)*cos²y]=f''(u)*e^(2x)=e^(2x)*z
所以有f''(u)=z=f(u),积分可得:f(u)=C1e^u+C2e^(-u) (C1、C2为任意常数)
我最后一步不会 这个怎么从f''(u)=z=f(u),积分可得:f(u)=C1e^u+C2e^(-u)
令u=e^x*siny,则z=f(u)
∂z/∂x=∂z/∂u*∂u/∂x=f'(u)*e^x*siny=uf'(u),∂²z/∂x²=∂(uf'(u))/∂x=uf'(u)+u²f''(u)
∂z/∂y=f'(u)*e^x*cosy,∂²z/∂y²=∂(f'(u)*e^x*cosy)/∂y=f''(u)*e^(2x)*cos²y-f'(u)*e^x*siny=f''(u)*e^(2x)*cos²y-uf'(u)
故∂²z/∂x²+∂²z/∂y²=uf'(u)+u²f''(u)+f''(u)*e^(2x)*cos²y-uf'(u)=u²f''(u)+f''(u)*e^(2x)*cos²y=f''(u)*[e^(2x)*sin²y+e^(2x)*cos²y]=f''(u)*e^(2x)=e^(2x)*z
所以有f''(u)=z=f(u),积分可得:f(u)=C1e^u+C2e^(-u) (C1、C2为任意常数)
我最后一步不会 这个怎么从f''(u)=z=f(u),积分可得:f(u)=C1e^u+C2e^(-u)
▼优质解答
答案和解析
你上几年级啊?
看了 设函数f(u)具有二阶导数,...的网友还看了以下:
我们把离心率为e=(√5+1)/2的双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)成为我 2020-03-30 …
已知涵数f(x)=x-2/x+1-alnx,a>0.(1)讨论f(x)的单调性.(2)设a=3,求 2020-05-13 …
lim(x/x+1)^x+3求极限.lim(x/x+1)^(x+3)=lim[1-1/(x+1)] 2020-05-14 …
导数相关的题.1.当K取何值时,分段函数:x不等于0时,f(x)=x的k次方乘以sin(1/x), 2020-06-11 …
设u=f(v)在(0,十∞)具有二阶连续导数,且u=f(1n√X^2+y^2+z^2)满足方程d^ 2020-07-22 …
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x 2020-07-26 …
已知曲线C1:f(x)=x^2+e^2,C2:g(x)=2e^2lnx(1)证明;当x>0时,f( 2020-08-01 …
已知函数f(x)=x^2*e^ax,x∈R,其中e为自然对数的底数,a∈R(1)设a=-1,x∈[ 2020-08-02 …
X、Y为两个独立的随机变量,请问x^2,y^2独立么?我的意思是这个公式这样写对么?D(xy)=E( 2020-11-16 …
已知函数f(x)=x^2*e^(-x),当曲线y=f(x)的切线I的斜率为负数时,求I在x轴上截距的 2021-02-03 …