早教吧作业答案频道 -->数学-->
正方形ABCD中,E是边CD的中点,F是线段CE的中点 求证:∠DAE=1/2∠BAF
题目详情
正方形ABCD中,E是边CD的中点,F是线段CE的中点 求证:∠DAE=1/2∠BAF
▼优质解答
答案和解析

证明:如图作∠BAF的平分线AH交DC的延长线于H,则∠1=∠2=∠3,
所以FA=FH.
设正方形边长为a,在Rt△ADF中,
AF²=AD²+DF²=a²+3/4a²=25/16a²;
解得AF= 5/4a=FH.
从而CH=FH-FC= 5/4a- 1/4a=a.
所以Rt△ABG≌Rt△HCG(AAS),
GB=GC=DE= 1/2a,
而Rt△ABG≌Rt△ADE(SAS),
所以∠DAE=∠2= 1/2∠BAF.

证明:如图作∠BAF的平分线AH交DC的延长线于H,则∠1=∠2=∠3,
所以FA=FH.
设正方形边长为a,在Rt△ADF中,
AF²=AD²+DF²=a²+3/4a²=25/16a²;
解得AF= 5/4a=FH.
从而CH=FH-FC= 5/4a- 1/4a=a.
所以Rt△ABG≌Rt△HCG(AAS),
GB=GC=DE= 1/2a,
而Rt△ABG≌Rt△ADE(SAS),
所以∠DAE=∠2= 1/2∠BAF.
看了 正方形ABCD中,E是边CD...的网友还看了以下:
已知三角形ABC外接圆半径为3,a,b,c 为三边,面积为a^2-(c-b)^2,sinC+sin 2020-05-13 …
设A,B为n阶矩阵,且满足A^2=A,B^2=B,(A+B)^2=(A+B),证明:AB=0. 2020-05-14 …
已知a(a^2+c^2b^2/2ac+a^2+b^2c^2/2ab)=b+c,如何得到b^2(c+ 2020-05-17 …
已知:如图,∠2是△ABC的一个外角.求证:∠2=∠A+∠B证明:如图,∵∠A+∠B+∠1=180 2020-07-12 …
一个三阶行列式,第一排1aa^2第二排1bb^2第三排1cc^2我算到这步就不会了,c^2(b-a 2020-07-25 …
已知a,b,c为正实数,求证b/a^2+c/b^2+a/c^2>=1/a+1/b+1/c 2020-07-30 …
三角形ABC的三边分别是a,b,c,边BC,CA,AB上的中线分别记为Ma,Mb,Mc,应用余弦定 2020-07-30 …
在三角形ABC和三角形A'B'C'中CD,C'D'分别是高,并且AC=A'C;,CD=C'D',∠A 2020-11-28 …
质数的平方仍是质数吗?已知a,b,c分别是直角三角形的三边,c是斜边,a,b,c是正整数,且a是质数 2020-12-09 …
想问道..可爱到缺德的题~1---X的平方+2X-M+1=0没有实根,求证方程X的平方+MX=1-2 2021-01-09 …