早教吧作业答案频道 -->数学-->
微分中值定理的题目函数f(x)在(0,1)上连续且可导,且f(0)=0,f(1)=1/2证:存在两点ξ1、ξ2属于(0,1),使得f'(ξ1)+f'(ξ2)=ξ1+ξ2
题目详情
微分中值定理的题目
函数f(x)在(0,1)上连续且可导,且f(0)=0,f(1)=1/2
证:存在两点ξ1、ξ2属于(0,1),使得f'(ξ1)+f'(ξ2)=ξ1+ξ2
函数f(x)在(0,1)上连续且可导,且f(0)=0,f(1)=1/2
证:存在两点ξ1、ξ2属于(0,1),使得f'(ξ1)+f'(ξ2)=ξ1+ξ2
▼优质解答
答案和解析
证:存在两点ξ1、ξ2属于(0,1),使得f'(ξ1)+f'(ξ2)=ξ1+ξ2
设F(x)=f(x)-x^2/2
F(x)在[0,1/2]上使用拉格朗日中值定理,存在ξ1∈(0,1/2),使得F'(ξ1)=[F(1/2)-f(0)] / (1/2-0)
F(x)在[1/2,1]上使用拉格朗日中值定理,存在ξ2∈(1/2,1),使得F'(ξ2)=[F(1)-f(1/2)] / (1-1/2)
相加,得f'(ξ1)+f'(ξ2)=ξ1+ξ2
设F(x)=f(x)-x^2/2
F(x)在[0,1/2]上使用拉格朗日中值定理,存在ξ1∈(0,1/2),使得F'(ξ1)=[F(1/2)-f(0)] / (1/2-0)
F(x)在[1/2,1]上使用拉格朗日中值定理,存在ξ2∈(1/2,1),使得F'(ξ2)=[F(1)-f(1/2)] / (1-1/2)
相加,得f'(ξ1)+f'(ξ2)=ξ1+ξ2
看了 微分中值定理的题目函数f(x...的网友还看了以下:
大家快来看看这几道题怎么简算!我急用!0.071*1234+0.71*567.6+7.1*23.4 2020-05-16 …
1.设f(x)在[0,1]上连续,且f(0)=f(1),证明:存在x0∈[0,1],使得f(x0) 2020-06-18 …
f(x)在[0,1]上连续,(0,1)上可导,上f(0)=f(1)=0,证明对任意X0属于(0,1 2020-07-12 …
直接写得数.1.2+0.3=4+0.6=12.9-5=12+3.5=0.9+0.7=0.6+1.4 2020-07-19 …
已知在400℃时,N2(g)+3H2(g)=2NH3(g)△H<0,该反应的平衡常数K1=0.5, 2020-07-21 …
已知sinx+cosx=m在[0,π]内有且只有两个不同的解α、β,求实数m的取值范围,并求α+β 2020-07-26 …
陈刚在解某个方程时,在方程两边乘0,得到0乘0.他错在哪? 2020-07-29 …
如果不等式组9x-a≥0,8x-b<0的整数解仅为1,2,3,那么式中的整数a,b的有序实数对(a 2020-08-03 …
环数ξ=4,概率P=0.02,环数5=0.04,P=0.04..n次射击后为什么书上写预计有大约P( 2020-10-30 …
已知Limf(x)/x^2=0x->0为什么可以推断出f'(x)=0,f''(x)=0.有一种解释是 2020-11-07 …