早教吧作业答案频道 -->数学-->
如图(1),点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM. (1)判断CN、DM的关系(2)如图(2),设CN、DM的交点为H,连接BH,求证:△BCH是等腰三角形;(3)将△ADM沿DM翻折得到△A′DM,延
题目详情
如图(1),点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM. (1)判断CN、DM的关系
(2)如图(2),设CN、DM的交点为H,连接BH,求证:△BCH是等腰三角形;
(3)将△ADM沿DM翻折得到△A′DM,延长MA′交DC的延长线于点E,试求出CE:BE的值
(2)如图(2),设CN、DM的交点为H,连接BH,求证:△BCH是等腰三角形;
(3)将△ADM沿DM翻折得到△A′DM,延长MA′交DC的延长线于点E,试求出CE:BE的值
▼优质解答
答案和解析
(1)CN=DM;CN⊥DM.
证明:∵AM=DN;AD=DC;∠A=∠CDN=90°.
∴⊿DAM≌⊿CDN(SAS),CN=DM;∠ADM=∠DCN.
∴∠CHD=180°-(∠CDH+∠DCN)=180°-(∠CDH+∠ADM)=90°,得CN⊥DM.
(2)证明:取CD的中点F,连接BF,交CH于G.则DF=BM,且DF∥BM.
∴四边形BFDM为平行四边形,BF∥MD,得CG/GH=CF/FD=1,CG=GH;
又MD⊥CN(已证),则BF⊥CN.
即BF垂直平分CH,故:BC=BH.
设ME交BC于P,连接DP.
∵CD=AD=A'D;DP=DP;∠DA'P=∠DCP=90°.
∴Rt⊿DCP≌Rt⊿DA'P(HL),CP=A'P.
设正方形边长为2,CP=x,则A'P=x,PM=A'P+A'M=x+AM=x+1,PB=BC-PC=2-x.
BM²+PB²=PM²,即1²+(2-x)²=(1+x)²,x=2/3.即PC=2/3,PB=2-PC=4/3.
∵CE∥BM.
∴CE/BM=PC/PB,即CE/1=(2/3)/(4/3),CE=1/2.
所以,CE:BE=(1/2):√(BC²+CE²)=(1/2):√(4+1/4)=(1/2):(√17/2)=1:√17.
证明:∵AM=DN;AD=DC;∠A=∠CDN=90°.
∴⊿DAM≌⊿CDN(SAS),CN=DM;∠ADM=∠DCN.
∴∠CHD=180°-(∠CDH+∠DCN)=180°-(∠CDH+∠ADM)=90°,得CN⊥DM.
(2)证明:取CD的中点F,连接BF,交CH于G.则DF=BM,且DF∥BM.
∴四边形BFDM为平行四边形,BF∥MD,得CG/GH=CF/FD=1,CG=GH;
又MD⊥CN(已证),则BF⊥CN.
即BF垂直平分CH,故:BC=BH.
设ME交BC于P,连接DP.
∵CD=AD=A'D;DP=DP;∠DA'P=∠DCP=90°.
∴Rt⊿DCP≌Rt⊿DA'P(HL),CP=A'P.
设正方形边长为2,CP=x,则A'P=x,PM=A'P+A'M=x+AM=x+1,PB=BC-PC=2-x.
BM²+PB²=PM²,即1²+(2-x)²=(1+x)²,x=2/3.即PC=2/3,PB=2-PC=4/3.
∵CE∥BM.
∴CE/BM=PC/PB,即CE/1=(2/3)/(4/3),CE=1/2.
所以,CE:BE=(1/2):√(BC²+CE²)=(1/2):√(4+1/4)=(1/2):(√17/2)=1:√17.
看了 如图(1),点M、N分别是正...的网友还看了以下:
在△ABC中,过B,C分别作∠BAC的平分线的垂线,E,F为垂足,AD⊥BC于D,M为BC中点.求 2020-04-25 …
点.如图,已知点D为等边三角形ABC边AC的中点,延长BC到E,使CE=二分之一BC,过D作BC的 2020-04-27 …
为了更直观地反映物体的加速度a与物体质量m的关系,往往用二者的关系图象表示出来,该关系图象最好应选 2020-05-02 …
已知如图:在正方形ABCD中,EF为AB,BC中点,DF,CE交于M求证:AD=AM已知如图:在正 2020-05-15 …
已知函数f(x)=(lnx)/x的图像为曲线C,函数g(x)=1/2*a*x+b的图像为直线l.( 2020-06-04 …
如图△ABC中,∠C=2∠B,AD⊥BC于D,M为BC的中点,求证:AC=2DM图很简单就是一个任 2020-06-15 …
已知,M是等边△ABC边BC上的点.(1)如图1,过点M作MN∥AC且交于点N,求证:BM=BN; 2020-06-18 …
已知:如图,在△ABC中,∠BAC的角平分线AD交BC于D,且AB=AD,作CM⊥AD交AD的延长 2020-07-13 …
如图:已知⊙M经过O点,并且⊙M与x轴,y轴分别交于A,B两点,线段OA,OB(OA>OB)的长是 2020-07-24 …
以三角形ABC的边AB,AC为边分别向外作正方形ABEF和ACGH,过A点作直线分别BC,FH于D 2020-08-01 …