早教吧作业答案频道 -->数学-->
如图:已知⊙M经过O点,并且⊙M与x轴,y轴分别交于A,B两点,线段OA,OB(OA>OB)的长是方程x2-17x+60=0的两根.(1)求线段OA,OB的长;(2)已知点C是劣弧OA的中点,连结BC交OA于D.①求证
题目详情
如图:已知⊙M经过O点,并且⊙M与x轴,y轴分别交于A,B两点,线段OA,OB(OA>OB)的长是方程x2-17x+60=0的两根.

(1)求线段OA,OB的长;
(2)已知点C是劣弧OA的中点,连结BC交OA于D.
①求证:OC2=CD•CB;②求点C的坐标;
(3)在(2)的条件下,在⊙M上是否存在一点P,使△POD的面积与△ABD的面积相等?若存在,求出点P的坐标;若不存在,说明理由.

(1)求线段OA,OB的长;
(2)已知点C是劣弧OA的中点,连结BC交OA于D.
①求证:OC2=CD•CB;②求点C的坐标;
(3)在(2)的条件下,在⊙M上是否存在一点P,使△POD的面积与△ABD的面积相等?若存在,求出点P的坐标;若不存在,说明理由.
▼优质解答
答案和解析
(1)x2-17x+60=0
(x-12)(x-5)=0
x1=12,x2=5,
OA=12,OB=5;
(2)①∵点C是劣弧OA的中点,
∴
=
∴∠OBC=∠DOC,
又∵∠C=∠C,
∴△OCB∽△DCO.
∴
=
即OC2=CD•CB;
②连接MC交OA于点E,根据垂径定理的推论,得ME⊥OA,

根据垂径定理,得OE=6,
∵OA=12,OB=5,∠BOA=90°,
∴AB是⊙M的直径,由勾股定理得AB=13,
根据勾股定理,得ME=
=
=2.5.
∴CE=6.5-2.5=4,
即C(6,-4);
(3)假定在⊙上存在点P,使S△ABD=S△POD,

∵OB∥EC,
∴△OBD∽△ECD,
∴
=
,
即
=
解得OD=
,
∴S△ABD=
AD•BO=
,
∴S△POD=
,
故可得在△POD中,OD边上的高为13,即点P到x轴的距离为13,
∵⊙上的点到x轴的最大距离为9,
∴点P不在⊙上,
故在⊙上不存在点P,使S△ABD=S△POD.
(x-12)(x-5)=0
x1=12,x2=5,
OA=12,OB=5;
(2)①∵点C是劣弧OA的中点,
∴
![]() |
OC |
![]() |
AC |
∴∠OBC=∠DOC,
又∵∠C=∠C,
∴△OCB∽△DCO.
∴
OC |
BC |
CD |
OC |
即OC2=CD•CB;
②连接MC交OA于点E,根据垂径定理的推论,得ME⊥OA,

根据垂径定理,得OE=6,
∵OA=12,OB=5,∠BOA=90°,
∴AB是⊙M的直径,由勾股定理得AB=13,
根据勾股定理,得ME=
MO2−ME2 |
6.52−62 |
∴CE=6.5-2.5=4,
即C(6,-4);
(3)假定在⊙上存在点P,使S△ABD=S△POD,

∵OB∥EC,
∴△OBD∽△ECD,
∴
OB |
EC |
OD |
ED |
即
5 |
4 |
OD |
6−OD |
解得OD=
10 |
3 |
∴S△ABD=
1 |
2 |
65 |
3 |
∴S△POD=
65 |
3 |
故可得在△POD中,OD边上的高为13,即点P到x轴的距离为13,
∵⊙上的点到x轴的最大距离为9,
∴点P不在⊙上,
故在⊙上不存在点P,使S△ABD=S△POD.
看了 如图:已知⊙M经过O点,并且...的网友还看了以下:
正方体ABCD-A'B'C'D' EF分别为AA'.CC'的中点 P是CC'上的动点 过点EDP坐 2020-05-16 …
数学题如图,在平面直角坐标系中,RT△OAB的斜边OA在X轴上,点B在第一象限,如图,在平面直角坐 2020-05-17 …
A.曲线B.直线C.线段D.线条 2020-05-26 …
求救已知线段AB=20cm,点M是线段AB的中点,点C是线段AB的延长线上的点,AC=3BC,点D 2020-06-06 …
找规律!在线段AB上取一点C时,共有3条线段.在线段AB上取两点C、D时,有6条线段.在线段AB取 2020-07-13 …
在Rt△ABC中,BC=AC,∠ACB=90°,点D为射线AB上一点,连接CD,过点C作线段CD的 2020-07-21 …
1.如图所示,已知线段AB=20cm,点M是线段AB中点,点C是线段AB延长线上的点,AC=3BC 2020-07-25 …
如图所示,下列说法不正确的是()A.点B到AC的垂线段是线段ABB.点C到AB的垂线段是线段ACC 2020-07-29 …
如图,点O是线段AB的中点,点C在线段AO上,点D在线段OB上,E,F是线段AB上任意两点如图,点O 2020-12-06 …
线段ab=4,点0是线段ab上的一点,c.d分别是线段0a.0b的中点.小明据此很轻松的求线段AB= 2021-01-05 …