早教吧作业答案频道 -->数学-->
如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为yE,yF.特例探究填空
题目详情
如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为yE,yF.
特例探究
填空:
当m=1,n=2时,yE=,yF=;
当m=3,n=5时,yE=,yF=.
归纳证明
对任意m,n(n>m>0),猜想yE与yF的大小关系,并证明你的猜想.
拓展应用
(1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”,其他条件不变,请直接写出yE与yF的大小关系;
(2)连接EF,AE.当S四边形OFEB=3S△OFE时,直接写yE与yF的大小关系及四边形OFEA的形状.

特例探究
填空:
当m=1,n=2时,yE=,yF=;
当m=3,n=5时,yE=,yF=.
归纳证明
对任意m,n(n>m>0),猜想yE与yF的大小关系,并证明你的猜想.
拓展应用
(1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”,其他条件不变,请直接写出yE与yF的大小关系;
(2)连接EF,AE.当S四边形OFEB=3S△OFE时,直接写yE与yF的大小关系及四边形OFEA的形状.

▼优质解答
答案和解析
m = 1, n = 2: yE = 2, yF = 2
m = 3, n = 5: yE = 15, yF = 15
M(m, m²), N(n, n²)
OM斜率: (m² - 0)/(m - 0) = m, 方程y = mx; 取x = n, y = mn, E(n, mn)
ON斜率: (n² - 0)/(n - 0) = n, 方程y = nx; 取x = m, y = mn, F(m, mn)
(1)
M(m, am²), N(n, an²)
OM斜率: (am² - 0)/(m - 0) = am, 方程y = amx; 取x = n, y = amn, E(n, amn)
ON斜率: (an² - 0)/(n - 0) = an, 方程y = anx; 取x = m, y = amn, F(m, amn)
yE = yF
(2)
上面已得yE = yF, 四边形OFEB为梯形, 面积S = (1/2)(FE + OB)BE = (1/2)(n - m + n)mn
S△OFE = (1/2)FE*BE = (1/2)(n - m)mn
S四边形OFEB=3S△OFE, (1/2)(n - m + n)mn = (3/2)mn(n - m)
n = 2m
EF = OA, 四边形OFEA为平行四边形
m = 3, n = 5: yE = 15, yF = 15
M(m, m²), N(n, n²)
OM斜率: (m² - 0)/(m - 0) = m, 方程y = mx; 取x = n, y = mn, E(n, mn)
ON斜率: (n² - 0)/(n - 0) = n, 方程y = nx; 取x = m, y = mn, F(m, mn)
(1)
M(m, am²), N(n, an²)
OM斜率: (am² - 0)/(m - 0) = am, 方程y = amx; 取x = n, y = amn, E(n, amn)
ON斜率: (an² - 0)/(n - 0) = an, 方程y = anx; 取x = m, y = amn, F(m, amn)
yE = yF
(2)
上面已得yE = yF, 四边形OFEB为梯形, 面积S = (1/2)(FE + OB)BE = (1/2)(n - m + n)mn
S△OFE = (1/2)FE*BE = (1/2)(n - m)mn
S四边形OFEB=3S△OFE, (1/2)(n - m + n)mn = (3/2)mn(n - m)
n = 2m
EF = OA, 四边形OFEA为平行四边形
看了 如图,在x轴上有两点A(m,...的网友还看了以下:
B(1.4)C(6.2)是面积为21的三角形ABC的两顶点A在直线x-y+3=0上求A坐标 2020-03-30 …
设数列an的前n项和为sn,点P(Sn,an)在直线(3-m)x+2my-m-3=0上,m属于N* 2020-06-05 …
为什么"如果a>b>0,t>0,设M=a/b,N=a+t/b+t,那么M>N" 2020-06-08 …
若同类项mx的2a+2次方y的2次方与0.4xy的3b+4次方的和为0,求m,a,b的值 2020-06-12 …
设集合A={(x,y)||x|+|y|≤1},B={(x,y)|(y-x)(y+x)≤0},M=A 2020-07-21 …
设半径为a,圆心在原点的圆的面积为s,∫√(a^2-x^2)dx=?,下限0,上线a我就是不明白为 2020-07-30 …
设半径为a,圆心在原点的圆的面积为s,∫√(a^2-x^2)dx=?,下限0,上线a 2020-07-30 …
设集合A={x丨丨1-x丨≤mx∈RB={x丨(x-a)(x-2a)=0若m=a²a≥0时是否存在 2020-08-02 …
第一题∫(下限0,上限2)被积函数为x/√(1+x^2)第二题∫(下限0,上限a)被积函数为√(a 2020-08-02 …
已知椭圆x^2+4y^2-2ax+a^2-4=0的左顶点在直线x-y+4=0上,则a的值为 2020-10-30 …