早教吧作业答案频道 -->数学-->
如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为yE,yF.特例探究填空
题目详情
如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为yE,yF.
特例探究
填空:
当m=1,n=2时,yE=,yF=;
当m=3,n=5时,yE=,yF=.
归纳证明
对任意m,n(n>m>0),猜想yE与yF的大小关系,并证明你的猜想.
拓展应用
(1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”,其他条件不变,请直接写出yE与yF的大小关系;
(2)连接EF,AE.当S四边形OFEB=3S△OFE时,直接写yE与yF的大小关系及四边形OFEA的形状.

特例探究
填空:
当m=1,n=2时,yE=,yF=;
当m=3,n=5时,yE=,yF=.
归纳证明
对任意m,n(n>m>0),猜想yE与yF的大小关系,并证明你的猜想.
拓展应用
(1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”,其他条件不变,请直接写出yE与yF的大小关系;
(2)连接EF,AE.当S四边形OFEB=3S△OFE时,直接写yE与yF的大小关系及四边形OFEA的形状.

▼优质解答
答案和解析
m = 1, n = 2: yE = 2, yF = 2
m = 3, n = 5: yE = 15, yF = 15
M(m, m²), N(n, n²)
OM斜率: (m² - 0)/(m - 0) = m, 方程y = mx; 取x = n, y = mn, E(n, mn)
ON斜率: (n² - 0)/(n - 0) = n, 方程y = nx; 取x = m, y = mn, F(m, mn)
(1)
M(m, am²), N(n, an²)
OM斜率: (am² - 0)/(m - 0) = am, 方程y = amx; 取x = n, y = amn, E(n, amn)
ON斜率: (an² - 0)/(n - 0) = an, 方程y = anx; 取x = m, y = amn, F(m, amn)
yE = yF
(2)
上面已得yE = yF, 四边形OFEB为梯形, 面积S = (1/2)(FE + OB)BE = (1/2)(n - m + n)mn
S△OFE = (1/2)FE*BE = (1/2)(n - m)mn
S四边形OFEB=3S△OFE, (1/2)(n - m + n)mn = (3/2)mn(n - m)
n = 2m
EF = OA, 四边形OFEA为平行四边形
m = 3, n = 5: yE = 15, yF = 15
M(m, m²), N(n, n²)
OM斜率: (m² - 0)/(m - 0) = m, 方程y = mx; 取x = n, y = mn, E(n, mn)
ON斜率: (n² - 0)/(n - 0) = n, 方程y = nx; 取x = m, y = mn, F(m, mn)
(1)
M(m, am²), N(n, an²)
OM斜率: (am² - 0)/(m - 0) = am, 方程y = amx; 取x = n, y = amn, E(n, amn)
ON斜率: (an² - 0)/(n - 0) = an, 方程y = anx; 取x = m, y = amn, F(m, amn)
yE = yF
(2)
上面已得yE = yF, 四边形OFEB为梯形, 面积S = (1/2)(FE + OB)BE = (1/2)(n - m + n)mn
S△OFE = (1/2)FE*BE = (1/2)(n - m)mn
S四边形OFEB=3S△OFE, (1/2)(n - m + n)mn = (3/2)mn(n - m)
n = 2m
EF = OA, 四边形OFEA为平行四边形
看了 如图,在x轴上有两点A(m,...的网友还看了以下:
如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,s两点,点P(0,k)是 2020-05-16 …
在平面直角坐标系中,已知直线y=-3/4x+3与x轴,y轴分别交于A,B两点,点C(0,n)... 2020-05-16 …
已知椭圆X^2/a^2+Y^2/b^2=1上任意一点M(除短轴端点外)与短轴两端点B1,B2的连线 2020-05-20 …
如图1,已知直线EA与x轴、y轴分别交于点E和点A(0,2),过直线EA上的两点F、G分别作轴的垂 2020-06-12 …
如图,已知定点R(0,-3),动点P,Q分别在x轴和y轴上移动,延长PQ至点M,使,且.(如图,已 2020-07-31 …
写出满足下列条件的椭圆的标准方程椭圆的两个顶点坐标分别为(-3,0),(3,0),且短轴是长轴的3 2020-07-31 …
在平面直角坐标系中,已知直线y=-3/4x+3与x轴,y轴分别交于A,B两点,点C(0,n)是y轴上 2020-11-03 …
(2014•潍坊模拟)已知椭圆x2a2+y2b2=1(a>b>0)过点(0,1),其长轴、焦距和短轴 2020-11-27 …
已知△ABC的三个顶点的坐标分别是A(0,3)B(-1,0)C(1,0)直线l:y=-kx+2k分别 2021-01-11 …
在直角坐标系中,如果a是正数,b是负数,则点(0,a),(b,0)分别在什么位置上?但是点(0,a) 2021-02-04 …