早教吧作业答案频道 -->数学-->
椭圆x^2/6+y^2/2=1,已知定点E(-1,0)若直线y=kx+2(k≠0)与椭圆交于CD两点问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
题目详情
椭圆x^2/6+y^2/2=1,已知定点E(-1,0)若直线y=kx+2(k≠0)与椭圆交于CD两点
问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
▼优质解答
答案和解析
很想告诉你解析几何……还是椭圆……的题目零分想让人解答难度还是有的,何况貌似题有点水,大虾们都看不起呀!还是我这个菜鸟来给你解答吧!
y=kx+2 ; x^2/6+y^2/2=1 两式,联立解解解,解出来得到方程:
( 3 * k^2 + 1 ) * x^2 + ( 12 * k ) * x + 6 = 0
然后伟达定理可得:
x1 * x2 = 6/(3*k^2+1)
x1 + x2 = - (12 * k)/(3*k^2+1)
由题意,设存在k满足,则有两个点 C:(x1,y1)和 D:(x2,y2),且CE垂直于DE
即 K(CE)*K(DE)= -1
列出等式:[ y1/(x1 + 1) ]*[ y2/(x2 + 1) ]= -1
再把y1 = k * x1 + 2 ; y2 = k * x2 + 2 代入上式,得到下式
(1 + k^2)* (x1 * x2) + (2 * k + 1)*(x1 + x2) + 5 = 0
把x1 * x2 = 6/(3*k^2+1) ; x1 + x2 = - (12 * k)/(3*k^2+1)
代入得到一个只包含k的分式:(11 - 3 * k^2 - 12 * k)/(3 * k^2 + 1)=0
由于分子一定不等于零,所以只需满足分母等于零即可
此为一元二次方程,有解,所以存在k的值,使以CD为直径的圆过E点
y=kx+2 ; x^2/6+y^2/2=1 两式,联立解解解,解出来得到方程:
( 3 * k^2 + 1 ) * x^2 + ( 12 * k ) * x + 6 = 0
然后伟达定理可得:
x1 * x2 = 6/(3*k^2+1)
x1 + x2 = - (12 * k)/(3*k^2+1)
由题意,设存在k满足,则有两个点 C:(x1,y1)和 D:(x2,y2),且CE垂直于DE
即 K(CE)*K(DE)= -1
列出等式:[ y1/(x1 + 1) ]*[ y2/(x2 + 1) ]= -1
再把y1 = k * x1 + 2 ; y2 = k * x2 + 2 代入上式,得到下式
(1 + k^2)* (x1 * x2) + (2 * k + 1)*(x1 + x2) + 5 = 0
把x1 * x2 = 6/(3*k^2+1) ; x1 + x2 = - (12 * k)/(3*k^2+1)
代入得到一个只包含k的分式:(11 - 3 * k^2 - 12 * k)/(3 * k^2 + 1)=0
由于分子一定不等于零,所以只需满足分母等于零即可
此为一元二次方程,有解,所以存在k的值,使以CD为直径的圆过E点
看了椭圆x^2/6+y^2/2=1...的网友还看了以下:
excel2003中怎样把A列只间隔0的相同数的个数显示在A列最后出现的相同数B列相同位置,A B 2020-05-16 …
①求满足不等式﹙x²-2x+3﹚﹙x²-2x-3﹚≤0的整数解②若关于x的不等式﹙a-1﹚x²+﹙ 2020-06-03 …
如图,已知一次函数y=kx+b的图像与反比例函数y=8/x的图像交于A,B如图所示,已知一次函数y 2020-06-14 …
已知二次函数Y=-0.5X平方+bx+cc小于0的图象与x轴的正半轴相交与A,B2点,与y轴交与点 2020-07-09 …
用天然气灶烧水,燃烧0.5m3的天然气,使100kg的水从20℃升高到70℃.求:(1)0.5m3 2020-07-10 …
已知一次函数y=kx+b的图象经过点P(0,-3),且与函数y=1/2x+1的图象交与点A(8/3 2020-07-20 …
(2013•保定一模)用波长为λ0的单色光照射金属钨,发出的光电子的最大初动能为EK.当改用波长为 2020-07-28 …
有理数关于0的小问题1、0既不是证书也不是负数2、0是最小的自然数3、0是最小的正数4、0是最小的非 2020-12-04 …
(2004•苏州)如图,平面直角坐标系中画出了函数y=kx+b的图象.(1)根据图象,求k,b的值; 2020-12-08 …
①求满足不等式﹙x²-2x+3﹚﹙x²-2x-3﹚≤0的整数解②若关于x的不等式﹙a-1﹚x²+﹙a 2020-12-09 …