早教吧作业答案频道 -->数学-->
椭圆x^2/6+y^2/2=1,已知定点E(-1,0)若直线y=kx+2(k≠0)与椭圆交于CD两点问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
题目详情
椭圆x^2/6+y^2/2=1,已知定点E(-1,0)若直线y=kx+2(k≠0)与椭圆交于CD两点
问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
▼优质解答
答案和解析
很想告诉你解析几何……还是椭圆……的题目零分想让人解答难度还是有的,何况貌似题有点水,大虾们都看不起呀!还是我这个菜鸟来给你解答吧!
y=kx+2 ; x^2/6+y^2/2=1 两式,联立解解解,解出来得到方程:
( 3 * k^2 + 1 ) * x^2 + ( 12 * k ) * x + 6 = 0
然后伟达定理可得:
x1 * x2 = 6/(3*k^2+1)
x1 + x2 = - (12 * k)/(3*k^2+1)
由题意,设存在k满足,则有两个点 C:(x1,y1)和 D:(x2,y2),且CE垂直于DE
即 K(CE)*K(DE)= -1
列出等式:[ y1/(x1 + 1) ]*[ y2/(x2 + 1) ]= -1
再把y1 = k * x1 + 2 ; y2 = k * x2 + 2 代入上式,得到下式
(1 + k^2)* (x1 * x2) + (2 * k + 1)*(x1 + x2) + 5 = 0
把x1 * x2 = 6/(3*k^2+1) ; x1 + x2 = - (12 * k)/(3*k^2+1)
代入得到一个只包含k的分式:(11 - 3 * k^2 - 12 * k)/(3 * k^2 + 1)=0
由于分子一定不等于零,所以只需满足分母等于零即可
此为一元二次方程,有解,所以存在k的值,使以CD为直径的圆过E点
y=kx+2 ; x^2/6+y^2/2=1 两式,联立解解解,解出来得到方程:
( 3 * k^2 + 1 ) * x^2 + ( 12 * k ) * x + 6 = 0
然后伟达定理可得:
x1 * x2 = 6/(3*k^2+1)
x1 + x2 = - (12 * k)/(3*k^2+1)
由题意,设存在k满足,则有两个点 C:(x1,y1)和 D:(x2,y2),且CE垂直于DE
即 K(CE)*K(DE)= -1
列出等式:[ y1/(x1 + 1) ]*[ y2/(x2 + 1) ]= -1
再把y1 = k * x1 + 2 ; y2 = k * x2 + 2 代入上式,得到下式
(1 + k^2)* (x1 * x2) + (2 * k + 1)*(x1 + x2) + 5 = 0
把x1 * x2 = 6/(3*k^2+1) ; x1 + x2 = - (12 * k)/(3*k^2+1)
代入得到一个只包含k的分式:(11 - 3 * k^2 - 12 * k)/(3 * k^2 + 1)=0
由于分子一定不等于零,所以只需满足分母等于零即可
此为一元二次方程,有解,所以存在k的值,使以CD为直径的圆过E点
看了椭圆x^2/6+y^2/2=1...的网友还看了以下:
根据下列要求,判断是否一定能做出图形1.过已知三点作一条直线;2.作直线OP的垂直平分线;3.过点 2020-04-25 …
如图,已知抛物线y=-4/9x²+bx+c与x轴相交于A、B两点,其对称轴为直线x=2,且与x轴交 2020-05-15 …
在△ABC中,边AB,BC的垂直平分线交于点P. 1.求证PA=PB=PC. 2.点P是否也在边A 2020-05-16 …
1、判断(1,1),(3,-1)是否共线.2、求直线y=-2x-6与坐标轴交点.3、求直线y=-2 2020-06-03 …
1.如图,已知抛物线于X轴交点A(-2,0),B(4,0).与y轴交点C(0,8)(2)设直线CD 2020-06-03 …
已知两条线段的两个端点的坐标,如何判断这两条直线是否相交(有公共端点的不算相交)例如:(0,1)( 2020-07-30 …
竖直渐近线的问题比如一道题“当x>0时,函数1/x是否存在竖直渐近线?”我就是想问一下,x=0是否 2020-08-01 …
如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连结AB.如果点P在直线y=x-1上,且 2020-11-27 …
如图,在梯形ABCD中,CD∥AB,AD、BC的延长线相交于点E,AC、BD相交于点O,连结EO并延 2020-12-25 …
直射点到晨昏线上各点的距离是否等于90乘以111=9990(公里)?在直射点经线上,太阳高度相差1度 2020-12-28 …