早教吧作业答案频道 -->数学-->
已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径
题目详情
已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.
(Ⅰ)求C的方程;
(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.
(Ⅰ)求C的方程;
(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.
▼优质解答
答案和解析
(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3-R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;
(II)设曲线C上任意一点P(x,y),由于|PM|-|PN|=2R-2≤4-2=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x-2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据
,可得Q(-4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.
【解析】
(I)由圆M:(x+1)2+y2=1,可知圆心M(-1,0);圆N:(x-1)2+y2=9,圆心N(1,0),半径3.
设动圆的半径为R,
∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3-R)=4,
而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,
∴a=2,c=1,b2=a2-c2=3.
∴曲线C的方程为
.(去掉点(-2,0))
(II)设曲线C上任意一点P(x,y),
由于|PM|-|PN|=2R-2≤4-2=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x-2)2+y2=4.
①l的倾斜角为90°,则l与y轴重合,可得|AB|=
.
②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,
设l与x轴的交点为Q,则
,可得Q(-4,0),所以可设l:y=k(x+4),
由l于M相切可得:
,解得
.
当
时,联立
,得到7x2+8x-8=0.
∴
,
.
∴|AB|=
=
=
由于对称性可知:当
时,也有|AB|=
.
综上可知:|AB|=
或
.
(II)设曲线C上任意一点P(x,y),由于|PM|-|PN|=2R-2≤4-2=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x-2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据
,可得Q(-4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解析】
(I)由圆M:(x+1)2+y2=1,可知圆心M(-1,0);圆N:(x-1)2+y2=9,圆心N(1,0),半径3.
设动圆的半径为R,
∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3-R)=4,
而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,
∴a=2,c=1,b2=a2-c2=3.
∴曲线C的方程为
.(去掉点(-2,0))(II)设曲线C上任意一点P(x,y),
由于|PM|-|PN|=2R-2≤4-2=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x-2)2+y2=4.
①l的倾斜角为90°,则l与y轴重合,可得|AB|=
.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,
设l与x轴的交点为Q,则
,可得Q(-4,0),所以可设l:y=k(x+4),由l于M相切可得:
,解得
.当
时,联立
,得到7x2+8x-8=0.∴
,
.∴|AB|=
=
=
由于对称性可知:当
时,也有|AB|=
.综上可知:|AB|=
或
.
看了 已知圆M:(x+1)2+y2...的网友还看了以下:
已知,PAB为圆的割线,交圆于A、B两点,PC切圆于C点,角CPB的平分先交AC与点E(A点在P、 2020-05-20 …
关于圆的问题,2道,急高中的谢谢了与圆x^2+y^2-2x-2y+1=0相切的直线L交X轴Y轴于A 2020-05-21 …
圆是三角形ABC的内切圆,DEF是切点,AB是18,BC是20.,AC是12,直线MN切圆于G,则 2020-06-05 …
几何法求轨迹已知定点A(0,2)及圆X^2+Y^2=4,过A作MA切圆于A,M为切线上一个动点,M 2020-06-08 …
已知圆M的方程为:x²+y²-2x-2y-6=0,以坐标原点为圆心的圆O与圆M相切已知圆M的方程为 2020-06-27 …
已知椭圆x/8+y/6=1,与圆(x-1)+y=1相切的直线l:y=kx+t交椭圆于M、N两点,若 2020-07-24 …
如图,已知圆G:(x-2)^2+y^2=r^2是椭圆x^2/16+y^2=1的内接△ABC的内切圆 2020-07-31 …
公切线已知圆O1与圆O2外切于点O已知圆O1与圆O2外切于点O,其半径之比为1:3,以直线O1O2 2020-07-31 …
如图,圆K与圆F内切圆于点B,圆K的直径BC=6,圆F的直径BE=4,圆K的弦BA交圆F于点D.求 2020-08-01 …
如图,AB为圆O的弦,PE切圆于E,交AB的延长线于P,角APE的平分线PC交EB于D,交AE于C 2020-08-03 …