早教吧作业答案频道 -->数学-->
在三角形ABC中,AB=AC=8,角BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,在三角形ABC中,AB=AC,角BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点p上,三角板绕点p旋转1)
题目详情
在三角形ABC中,AB=AC=8,角BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,
在三角形ABC中,AB=AC,角BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点p上,三角板绕点p旋转
1)如图1,当三角板的两边分别交AB、AC于点E、F时,说明△BPE与△CFP相似的理由.
(2)操作:将三角板绕点P旋转到图2情形是,三角板的两边分别交BA的延长线、边AC于点E、F.
探究1:△BEP与△CFP还相似吗?
探究2:连接EF,△BPE与△PFE是否相似?为什么?
摆脱各位拉,答得好的继续追加~
在三角形ABC中,AB=AC,角BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点p上,三角板绕点p旋转
1)如图1,当三角板的两边分别交AB、AC于点E、F时,说明△BPE与△CFP相似的理由.
(2)操作:将三角板绕点P旋转到图2情形是,三角板的两边分别交BA的延长线、边AC于点E、F.
探究1:△BEP与△CFP还相似吗?
探究2:连接EF,△BPE与△PFE是否相似?为什么?
摆脱各位拉,答得好的继续追加~
▼优质解答
答案和解析
(1)证明:在△ABC中,∠BAC=120°,AB=AC,所以∠B=∠C=30°,
因为∠B+∠BPE+∠BEP=180° 所以∠BPE+∠BEP=150°
因为∠EPF=30°,又因为 ∠BPE+∠EPF+∠CPF=180°
所以∠BPE+∠CPF=150°
所以∠BEP=∠CPF
所以△BPE∽△CFP
(2)①△BPE∽△CFP
②△BPE与△PFE相似.
下面证明结论
同(1)可证△BPE∽△CFP得CP:BE=PF:PE ,而CP=BP
因此BP:BE=PF:PE ,
又因为∠EBP=∠EPF,
所以△BPE∽△PFE
因为∠B+∠BPE+∠BEP=180° 所以∠BPE+∠BEP=150°
因为∠EPF=30°,又因为 ∠BPE+∠EPF+∠CPF=180°
所以∠BPE+∠CPF=150°
所以∠BEP=∠CPF
所以△BPE∽△CFP
(2)①△BPE∽△CFP
②△BPE与△PFE相似.
下面证明结论
同(1)可证△BPE∽△CFP得CP:BE=PF:PE ,而CP=BP
因此BP:BE=PF:PE ,
又因为∠EBP=∠EPF,
所以△BPE∽△PFE
看了在三角形ABC中,AB=AC=...的网友还看了以下:
以《被遗忘的角落》为主题的作文400字不要那么好20分左右就可以了 2020-05-17 …
直角三角形纸片ABC中,∠ACB=90°,AC≤BC,如图,将纸片沿某条直线折叠,使点A落在直角边 2020-06-08 …
从搅动春节的微信红包,到与打车软件的亲密合作,再到令人眼花缭乱的互联网理财产品,互联网正渗入百姓金 2020-06-27 …
请看补充问题让4个人站在一个空房间的四个角,关灯.让第一个人走向第二个人的角落拍下第二个人让第二个 2020-06-30 …
原来教室最脏臭的角落,因为阿瓜的负责变成了教室里最醒目的净土, 2020-07-04 …
如图,是两块完全一样的含角的三角板,分别记作△ABC和△A1B1C1,现将两块三角板重叠在一起,设 2020-07-16 …
如图是两块完全一样的含30°角的三角板,分别记作△ABC和△A1B1C1,现将两块三角板重叠在一起 2020-07-22 …
求助一道相似题等腰三角形ABC,AB=AC,角BAC=120,P为BC上的中点,拿一把含30度角的 2020-08-01 …
全班同学的目光一齐投向了那个角落.改为把字句 2020-12-15 …
从搅动春节的微信红包,到与打车软件的亲密合作,再到令人眼花缭乱的互联网理财产品,互联网正渗入百姓金融 2020-12-18 …