早教吧作业答案频道 -->数学-->
如图,在Rt△AOB中,∠ABO=30°,BO=4,分别以OA、OB边所在的直线建立平面直角坐标系,D点为x轴正半轴上的一点,以OD为一边在第一象限内作等边△ODE.(Ⅰ)如图①当E点恰好落在线段AB上时,
题目详情
如图,在Rt△AOB中,∠ABO=30°,BO=4,分别以OA、OB边所在的直线建立平面直角坐标系,D点为x轴正半轴上的一点,以OD为一边在第一象限内作等边△ODE.
(Ⅰ)如图①当E点恰好落在线段AB上时,求E点坐标;
(Ⅱ)若点D从原点出发沿x轴正方向移动,设点D到原点的距离为x,△ODE与△AOB重叠部分的面积为y,当E点到达△AOB的外面,且点D在点B左侧时,写出y与x的函数关系式,并写出自变量x的取值范围;
(Ⅲ)在(Ⅰ)问的条件下,将△ODE在线段OB上向右平移如图②,图中是否存在一条与线段OO′始终相等的线段?如果存在,请直接指出这条线段;如果不存在,请说明理由.

(Ⅰ)如图①当E点恰好落在线段AB上时,求E点坐标;
(Ⅱ)若点D从原点出发沿x轴正方向移动,设点D到原点的距离为x,△ODE与△AOB重叠部分的面积为y,当E点到达△AOB的外面,且点D在点B左侧时,写出y与x的函数关系式,并写出自变量x的取值范围;
(Ⅲ)在(Ⅰ)问的条件下,将△ODE在线段OB上向右平移如图②,图中是否存在一条与线段OO′始终相等的线段?如果存在,请直接指出这条线段;如果不存在,请说明理由.

▼优质解答
答案和解析
(1)作EH⊥OB于点H,
∵△OED是等边三角形,
∴∠EOD=60°.
又∵∠ABO=30°,
∴∠OEB=90°.
∵BO=4,
∴OE=
OB=2.
∵△OEH是直角三角形,且∠OEH=30°
∴OH=1,EH=
,
∴E(1,
).
(2)当2<x<4,符合题意,
如图,

所求重叠部分四边形OD′NE的面积为:
S△OD′E-S△E′EN=
x2-
E′E×EN
=
x2-
×
(x-2)
=-
x2+2
x-2
(3)存在线段EF=OO'.
∵∠ABO=30°,∠EDO=60°
∴∠ABO=∠DFB=30°,
∴DF=DB.
∴OO′=4-2-DB=2-DB=2-DF=ED-FD=EF
∵△OED是等边三角形,
∴∠EOD=60°.
又∵∠ABO=30°,
∴∠OEB=90°.
∵BO=4,
∴OE=
1 |
2 |
∵△OEH是直角三角形,且∠OEH=30°
∴OH=1,EH=
3 |
∴E(1,
3 |
(2)当2<x<4,符合题意,
如图,

所求重叠部分四边形OD′NE的面积为:
S△OD′E-S△E′EN=
| ||
4 |
1 |
2 |
=
| ||
4 |
x-2 |
2 |
3 |
=-
| ||
4 |
3 |
3 |
(3)存在线段EF=OO'.
∵∠ABO=30°,∠EDO=60°
∴∠ABO=∠DFB=30°,
∴DF=DB.
∴OO′=4-2-DB=2-DB=2-DF=ED-FD=EF
看了 如图,在Rt△AOB中,∠A...的网友还看了以下:
已知:如图,在直角坐标系中,直角三角形OAB,O为坐标原点,AB=1,OB=3,将△OAB绕着A点 2020-05-13 …
已知椭圆x^2/2+y^2=1的左焦点为F,O为坐标原点,设过点F且不与坐标轴垂直的直线交椭已知椭 2020-05-16 …
如图在平面直角坐标系中,点O为坐标原点,A(-4,0),B(0,2)C(6,0).直线AB与CD相 2020-06-14 …
如图,在平面直角坐标系中,o为坐标原点,抛物线y等于二分之一x方加2x与x轴相交于点O,B两点顶点 2020-06-14 …
已知直线y=x与直线y=kx+b交于点A(m,n)(m>0),点B在直线y=x上且与点A关于坐标原 2020-06-14 …
角A是90度,AB比OB是1比2,三角形AOB是8倍根号3,求A.B的坐标,O是直角坐标系的原点, 2020-07-19 …
在平面直角坐标系中,O为坐标原点,直线y=-x+6与x轴交于点A,与y轴交于点B,抛物线y=ax2 2020-07-25 …
如图,在平面直角坐标系中,O为坐标原点,圆C的圆心坐标为(-2,-2)如图,在平面直角坐标系中,O 2020-07-26 …
如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(-1,0),∠ABO=30°,线段 2020-07-29 …
已知以点C(t,2/t)),(t>0)为圆心的圆与与X轴交与O,A,与Y轴交与点O,B其中O为坐标 2020-08-02 …