早教吧作业答案频道 -->数学-->
如图,在Rt△AOB中,∠ABO=30°,BO=4,分别以OA、OB边所在的直线建立平面直角坐标系,D点为x轴正半轴上的一点,以OD为一边在第一象限内作等边△ODE.(Ⅰ)如图①当E点恰好落在线段AB上时,
题目详情
如图,在Rt△AOB中,∠ABO=30°,BO=4,分别以OA、OB边所在的直线建立平面直角坐标系,D点为x轴正半轴上的一点,以OD为一边在第一象限内作等边△ODE.
(Ⅰ)如图①当E点恰好落在线段AB上时,求E点坐标;
(Ⅱ)若点D从原点出发沿x轴正方向移动,设点D到原点的距离为x,△ODE与△AOB重叠部分的面积为y,当E点到达△AOB的外面,且点D在点B左侧时,写出y与x的函数关系式,并写出自变量x的取值范围;
(Ⅲ)在(Ⅰ)问的条件下,将△ODE在线段OB上向右平移如图②,图中是否存在一条与线段OO′始终相等的线段?如果存在,请直接指出这条线段;如果不存在,请说明理由.

(Ⅰ)如图①当E点恰好落在线段AB上时,求E点坐标;
(Ⅱ)若点D从原点出发沿x轴正方向移动,设点D到原点的距离为x,△ODE与△AOB重叠部分的面积为y,当E点到达△AOB的外面,且点D在点B左侧时,写出y与x的函数关系式,并写出自变量x的取值范围;
(Ⅲ)在(Ⅰ)问的条件下,将△ODE在线段OB上向右平移如图②,图中是否存在一条与线段OO′始终相等的线段?如果存在,请直接指出这条线段;如果不存在,请说明理由.

▼优质解答
答案和解析
(1)作EH⊥OB于点H,
∵△OED是等边三角形,
∴∠EOD=60°.
又∵∠ABO=30°,
∴∠OEB=90°.
∵BO=4,
∴OE=
OB=2.
∵△OEH是直角三角形,且∠OEH=30°
∴OH=1,EH=
,
∴E(1,
).
(2)当2<x<4,符合题意,
如图,

所求重叠部分四边形OD′NE的面积为:
S△OD′E-S△E′EN=
x2-
E′E×EN
=
x2-
×
(x-2)
=-
x2+2
x-2
(3)存在线段EF=OO'.
∵∠ABO=30°,∠EDO=60°
∴∠ABO=∠DFB=30°,
∴DF=DB.
∴OO′=4-2-DB=2-DB=2-DF=ED-FD=EF
∵△OED是等边三角形,
∴∠EOD=60°.
又∵∠ABO=30°,
∴∠OEB=90°.
∵BO=4,
∴OE=
1 |
2 |
∵△OEH是直角三角形,且∠OEH=30°
∴OH=1,EH=
3 |
∴E(1,
3 |
(2)当2<x<4,符合题意,
如图,

所求重叠部分四边形OD′NE的面积为:
S△OD′E-S△E′EN=
| ||
4 |
1 |
2 |
=
| ||
4 |
x-2 |
2 |
3 |
=-
| ||
4 |
3 |
3 |
(3)存在线段EF=OO'.
∵∠ABO=30°,∠EDO=60°
∴∠ABO=∠DFB=30°,
∴DF=DB.
∴OO′=4-2-DB=2-DB=2-DF=ED-FD=EF
看了 如图,在Rt△AOB中,∠A...的网友还看了以下:
请讲解详细步骤,最好有图如图,质量为1kg的小球用长为0.5m的细线悬挂在O点,O点距地面高度为1 2020-04-27 …
如图,边长为2的等边三角形OAB的顶点A在x轴的正半轴上,B点位于第一象限,将△OAB绕点O顺时针 2020-05-14 …
平面直角坐标系中有一个边长为2的正方形AOBC,M为OB的中点,将△AOM沿直线AM对折,使O点落 2020-05-22 …
一电子跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个 2020-06-29 …
(2008•南充)如图,已知平面直角坐标系xoy中,有一矩形纸片OABC,O为坐标原点,AB∥x轴 2020-07-22 …
如图,已知平面直角坐标系xoy中,有一矩形纸片OABC,O为坐标原点,AB∥x轴,B(3,),现将 2020-07-22 …
线段OA=2(O为坐标原点),点A在x轴的正半轴上.现将线段OA绕点O逆时针旋转α度,且0<α<9 2020-07-25 …
如图,△ABC中,AB=AC,AD⊥BC,AD=4,CE平分∠ACB交AD于点E.以线段CE为弦作 2020-07-30 …
如图,已知抛物线y=ax2+bx+c经过原点O,它的顶点坐标为(5,254),在抛物线内作矩形AB 2020-08-02 …
如图,点A是双曲线y=kx(x>0)上的一点,连结OA,在线段OA上取一点B,作BC⊥x轴于点C,以 2020-11-08 …