早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在Rt△AOB中,∠ABO=30°,BO=4,分别以OA、OB边所在的直线建立平面直角坐标系,D点为x轴正半轴上的一点,以OD为一边在第一象限内作等边△ODE.(Ⅰ)如图①当E点恰好落在线段AB上时,

题目详情
如图,在Rt△AOB中,∠ABO=30°,BO=4,分别以OA、OB边所在的直线建立平面直角坐标系,D点为x轴正半轴上的一点,以OD为一边在第一象限内作等边△ODE.
(Ⅰ)如图①当E点恰好落在线段AB上时,求E点坐标;
(Ⅱ)若点D从原点出发沿x轴正方向移动,设点D到原点的距离为x,△ODE与△AOB重叠部分的面积为y,当E点到达△AOB的外面,且点D在点B左侧时,写出y与x的函数关系式,并写出自变量x的取值范围;
(Ⅲ)在(Ⅰ)问的条件下,将△ODE在线段OB上向右平移如图②,图中是否存在一条与线段OO′始终相等的线段?如果存在,请直接指出这条线段;如果不存在,请说明理由.
作业帮
▼优质解答
答案和解析
(1)作EH⊥OB于点H,
∵△OED是等边三角形,
∴∠EOD=60°.
又∵∠ABO=30°,
∴∠OEB=90°.
∵BO=4,
∴OE=
1
2
OB=2.
∵△OEH是直角三角形,且∠OEH=30°
∴OH=1,EH=
3

∴E(1,
3
).
(2)当2<x<4,符合题意,
如图,
作业帮
所求重叠部分四边形OD′NE的面积为:
S△OD′E-S△E′EN=
3
4
x2-
1
2
E′E×EN
=
3
4
x2-
x-2
2
×
3
(x-2)
=-
3
4
x2+2
3
x-2
3

(3)存在线段EF=OO'.
∵∠ABO=30°,∠EDO=60°
∴∠ABO=∠DFB=30°,
∴DF=DB.
∴OO′=4-2-DB=2-DB=2-DF=ED-FD=EF