早教吧作业答案频道 -->数学-->
“6”字形图中,FM是大⊙O的直径,BC与大⊙O相切于B,OB与小⊙O相交于A,AD∥BC,CD∥BH∥FM,DH⊥BH于H,设∠FOB=α,OB=4,BC=6.(1)求证:AD为小⊙O的切线;(2)若∠FOB=30°,试判断GH与OE的数量关系(3)探
题目详情
“6”字形图中,FM是大⊙O的直径,BC与大⊙O相切于B,OB与小⊙O相交于A,AD∥BC,CD∥BH∥FM,DH⊥BH于H,设∠FOB=α,OB=4,BC=6.
(1)求证:AD为小⊙O的切线;
(2)若∠FOB=30°,试判断GH与OE的数量关系(3)探究:a是多少度时
四边形CDHG为正方形
(1)求证:AD为小⊙O的切线;
(2)若∠FOB=30°,试判断GH与OE的数量关系(3)探究:a是多少度时
四边形CDHG为正方形
▼优质解答
答案和解析
(1)证明:∵BC是大⊙O的切线,
∴∠CBO=90°.
∵BC∥AD,
∴∠BAD=90°即OA⊥AD.
又∵点A在小⊙O上,
∴AD是小⊙O的切线.
(答案不唯一)所写结果分层如下:
A层次:①∠BOM=180°-α;②∠GBO=α;③∠BGA=90°-α;④∠DGH=90°-α;⑤∠CBG=90°-α;⑥∠BGD=90°+α;
B层次:⑦∠GDH=α;⑧∠CDA=90-α;⑨∠C=90°+α
相应的说明过程如下:
A层次:选③
理由:∵BH∥FM,∴∠GBO=∠FOB=α.
由(1)可知,∠BAG=90°,∴∠BGA=90°-α.
B层次:选⑨
理由:∵BH∥FM,∴∠GBO=∠FOB=α.
由(1)可知,∠BAG=90°,
∴∠BGA=90°-α.
∵CD∥BG,∴∠CDG=∠BGA=90°-α.
∵CB∥AD,
∴∠C=180°-∠CDG=180°-(90°-α)=90°+α.
∴∠CBO=90°.
∵BC∥AD,
∴∠BAD=90°即OA⊥AD.
又∵点A在小⊙O上,
∴AD是小⊙O的切线.
(答案不唯一)所写结果分层如下:
A层次:①∠BOM=180°-α;②∠GBO=α;③∠BGA=90°-α;④∠DGH=90°-α;⑤∠CBG=90°-α;⑥∠BGD=90°+α;
B层次:⑦∠GDH=α;⑧∠CDA=90-α;⑨∠C=90°+α
相应的说明过程如下:
A层次:选③
理由:∵BH∥FM,∴∠GBO=∠FOB=α.
由(1)可知,∠BAG=90°,∴∠BGA=90°-α.
B层次:选⑨
理由:∵BH∥FM,∴∠GBO=∠FOB=α.
由(1)可知,∠BAG=90°,
∴∠BGA=90°-α.
∵CD∥BG,∴∠CDG=∠BGA=90°-α.
∵CB∥AD,
∴∠C=180°-∠CDG=180°-(90°-α)=90°+α.
看了“6”字形图中,FM是大⊙O的...的网友还看了以下:
设函数f(x)在x=a的某个邻域内有定义,则f(x)在x=a处可导的一个充分条件是?请写出分析过程! 2020-03-30 …
一道简单的二阶导数和一道简单的不定积分1,设f"(x)存在,证明lim(h->0)[f(x0+h) 2020-05-13 …
变限积分求道问题对函数f(t+h)-f(t-h)在[-h,h]上的积分对h求导.F(h)=∫[-h 2020-05-23 …
f(0)=0,则f(x)在x=0处可导的充要条件为A.lim(1/h^2)f(1-cosh),h→ 2020-06-12 …
f(0)=0,则f(x)在x=0处可导的充要条件为A.lim(1/h^2)f(1-cosh),h→ 2020-06-18 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
一道高数题目设f(x)在x=a的某个临域内有定义,则f(x)在x=a处可导的一个充分条件是()(A 2020-07-30 …
证明题:如果y=f(x)在x0处可导,那么lim(h->0)[f(x0+h)-f(x0-h)]/2 2020-08-01 …
f(x)=sinx,求f(1+h),[f(1+h)-f(1)]/h根据和差化积公式:sinα-si 2020-08-02 …
求导不同思路引起的不同结果习题:设f(x)的二阶导数存在,求lim[f(x+2h)-2f(x+h)+ 2020-11-03 …