早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知a和b是任意非零实数.(1)求|2a+b|+|2a−b||a|的最小值.(2)若不等式|2a+b|+|2a-b|≥|a|(|2+x|+|2-x|)恒成立,求实数x的取值范围.

题目详情
已知a和b是任意非零实数.
(1)求
|2a+b|+|2a−b|
|a|
的最小值.
(2)若不等式|2a+b|+|2a-b|≥|a|(|2+x|+|2-x|)恒成立,求实数x的取值范围.
▼优质解答
答案和解析
(1)∵
|2a+b|+|2a−b|
|a|
=|
2a+b
a
|+|
2a−b
a
|=|2+
b
a
|+|2-
b
a
|≥|(2+
b
a
)+(2-
b
a
)|=4,
所以 
|2a+b|+|2a−b|
|a|
的最小值为4.
(2)∵|2a+b|+|2a-b|≥|2a+b+2a-b|=4|a|,不等式|a+b|+|a-b|≥|a|(|2+x|+|2-x|)恒成立,
∴4|a||≥|a|(|2+x|+|2-x|),即|2+x|+|2-x|≤4.
而|2+x|+|2-x|表示数轴上的x对应点到-2、2对应点的距离之和,它的最小值为4,
故|2+x|+|2-x|=4,∴-2≤x≤2,
即实数x的取值范围为:[-2,2].