早教吧作业答案频道 -->数学-->
f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=0.证明:至少存在一点c∈(0,1),使得cf'(c)+2f(c)=f'(c)
题目详情
f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=0.证明:至少存在一点c∈(0,1),使得cf'(c)+2f(c)=f'(c)
▼优质解答
答案和解析
F(x)=(x-1)^2f(x),F(0)=0,F(1)=0,F'(x)=2(x-1)f(x)+(x-1)^2f'(x).
看了 f(x)在[0,1]上连续,...的网友还看了以下:
已知函数f(x)定义在R上,对∀x,y∈R,有f(x+y)+f(x-y)=2f(x)•f(y),且 2020-05-13 …
定义在R上的函数f(x),对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)*f(y),且 2020-05-13 …
一道数学证明题f(0)=0,f'(0)>0,f''(x)0,求证f(x)在x>0上有零点感谢晶石同 2020-05-17 …
设函数f(x)二次可微分,且f''(x)>0,f(0)=0证明:函数F(x)=f(x)/x,x≠0 2020-06-08 …
f(x)在[0,1]连续,在(0,1)可导.f(0)=0,f(1)=1.证明存在两点a,b属于(f 2020-06-18 …
一道奇怪的数学证明题:设定义在R上的连续函数f(x)满足f'(x)=f(x)且有f(0)=0,证一 2020-06-22 …
一道关于函数的证明题,我就剩一步证不出来,设f(x)=3ax的平方+2bx+c,若a+b+c=0, 2020-07-31 …
定积分求证~函数f(x)在[a,b]上连续,且f(x)>0令F(x)=∫(0到x)f(t)dt+∫ 2020-07-31 …
微积分设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(0)=f(1)=0.证明:至少微 2020-07-31 …
证明题(本大题5分)1.设f(x)在[0,1]上连续,且f(0)=0,f(1)=1.证明:至少存在 2020-08-01 …