早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)定义在R上,对∀x,y∈R,有f(x+y)+f(x-y)=2f(x)•f(y),且f(0)≠0.(1)求证:f(0)=1;(2)求证:y=f(x)是偶函数;(3)若存在常数c,使f(c2)=0.①求证:对∀x

题目详情
已知函数f(x)定义在R上,对∀x,y∈R,有f(x+y)+f(x-y)=2f(x)•f(y),且f(0)≠0.
(1)求证:f(0)=1;
(2)求证:y=f(x)是偶函数;
(3)若存在常数c,使f(
c
2
)=0.①求证:对∀x∈R,有f(x+c)=-f(x);②求证:y=f(x)是周期函数.
▼优质解答
答案和解析
(1)证明:∵f(x+y)+f(x-y)=2f(x)•f(y)令x=y=0得f(0)+f(0)=2f2(0),又∵f(0)≠0∴f(0)=1(2)证明:在f(x+y)+f(x-y)=2f(x)•f(y)中,令x=0得f(y)+f(-y)=2f(0)•f(y)=2f(y),...