早教吧作业答案频道 -->数学-->
设函数f(x)二次可微分,且f''(x)>0,f(0)=0证明:函数F(x)=f(x)/x,x≠0,f'(0),x=0是连续的单调增函数.我连续性已证,但单调性证不出来,
题目详情
设函数f(x)二次可微分,且f''(x)>0,f(0)=0
证明:函数F(x)=f(x)/x ,x≠0,f'(0) ,x=0 是连续的单调增函数.
我连续性已证,但单调性证不出来,
证明:函数F(x)=f(x)/x ,x≠0,f'(0) ,x=0 是连续的单调增函数.
我连续性已证,但单调性证不出来,
▼优质解答
答案和解析
对F(x)求导数F'(x)=[xf'(x)-f(x)]/x^2证明F'(x)>0即可分母大于0,只需证分子大于0因为f''(x)>0,说明f'(x)是增函数这样再设x1
看了 设函数f(x)二次可微分,且...的网友还看了以下:
f(x)在0,+无穷)上连续,在(0,+无穷)上可微,且f(x)的导数单调递增,f(0)=0,证明 2020-06-05 …
一道大一数学题,急等!设f(x)有二阶连续导数,且f(0)=0,试证函数g(x)可导,且g'(x) 2020-06-06 …
设函数f(x)二次可微分,且f''(x)>0,f(0)=0证明:函数F(x)=f(x)/x,x≠0 2020-06-08 …
设f为R上单调函数,定义g(x)=f(x+0),证明函数g在R上每点都右连续∵f为R上的单调函数, 2020-06-16 …
关于导数的一道证明题已知函数f(x)在闭区间0到正无穷上连续,且f(0)=0,f'(x)在闭区间0 2020-07-19 …
怎么证明反比例函数的单调性?自变量可以一个取在(-∞,0)另一个(0,+∞)还是先在(-∞,0)证 2020-07-25 …
如何证明单峰函数?设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0 2020-07-30 …
数学单调证明题设在区间[0,+∞)上,函数f(x)满足f(0)=0,f'(x)单调递增,证明:F( 2020-07-30 …
设f(x)在[0,a]上连续,在(0,a)内可导,切f(0)=0,f'(x)单调增加(fx的倒数)证 2020-11-20 …
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,且f'(x)单调增加,f(0)=0,证明f(x 2020-11-20 …