早教吧作业答案频道 -->数学-->
附加题已知二次函数y=x2+2(m+1)x-m+1.(1)随着m的变化,该二次函数图象的顶点P是否都在某条抛物线上?如果是,请求出该抛物线的函数表达式;如果不是,请说明理由.(2)如果直
题目详情
【附加题】已知二次函数y=x2+2(m+1)x-m+1.
(1)随着m的变化,该二次函数图象的顶点P是否都在某条抛物线上?如果是,请求出该抛物线的函数表达式;如果不是,请说明理由.
(2)如果直线y=x+1经过二次函数y=x2+2(m+1)x-m+1图象的顶点P,求此时m的值.
(1)随着m的变化,该二次函数图象的顶点P是否都在某条抛物线上?如果是,请求出该抛物线的函数表达式;如果不是,请说明理由.
(2)如果直线y=x+1经过二次函数y=x2+2(m+1)x-m+1图象的顶点P,求此时m的值.
▼优质解答
答案和解析
(1)该二次函数图象的顶点P是在某条抛物线上求该抛物线的函数表达式如下:
利用配方,得y=(x+m+1)2-m2-3m,顶点坐标是P(-m-1,-m2-3m).
方法一:分别取m=0,-1,1,得到三个顶点坐标是P1(-1,0)、P2(0,2)、
P3(-2,-4),过这三个顶点的二次函数的表达式是y=-x2+x+2.
将顶点坐标P(-m-1,-m2-3m)代入y=-x2+x+2的左右两边,左边=-m2-3m,
右边=-(-m-1)2+(-m-1)+2=-m2-3m,
∴左边=右边.即无论m取何值,顶点P都在抛物线y=-x2+x+2上.
即所求抛物线的函数表达式是y=-x2+x+2.
方法二:令-m-1=x,则m=-x-1,将其代入-m2-3m,得-(-x-1)2-3(-x-1)=-x2+x+2.
即所求抛物线的函数表达式是y=-x2+x+2上.
(2)如果顶点P(-m-1,-m2-3m)在直线y=x+1上,
则-m2-3m=-m-1+1,
即m2=-2m,
∴m=0或m=-2,
∴当直线y=x+1经过二次函数y=x2+2(m+1)x-m+1图象的顶点P时,m的值是-2或0.
利用配方,得y=(x+m+1)2-m2-3m,顶点坐标是P(-m-1,-m2-3m).
方法一:分别取m=0,-1,1,得到三个顶点坐标是P1(-1,0)、P2(0,2)、
P3(-2,-4),过这三个顶点的二次函数的表达式是y=-x2+x+2.
将顶点坐标P(-m-1,-m2-3m)代入y=-x2+x+2的左右两边,左边=-m2-3m,
右边=-(-m-1)2+(-m-1)+2=-m2-3m,
∴左边=右边.即无论m取何值,顶点P都在抛物线y=-x2+x+2上.
即所求抛物线的函数表达式是y=-x2+x+2.
方法二:令-m-1=x,则m=-x-1,将其代入-m2-3m,得-(-x-1)2-3(-x-1)=-x2+x+2.
即所求抛物线的函数表达式是y=-x2+x+2上.
(2)如果顶点P(-m-1,-m2-3m)在直线y=x+1上,
则-m2-3m=-m-1+1,
即m2=-2m,
∴m=0或m=-2,
∴当直线y=x+1经过二次函数y=x2+2(m+1)x-m+1图象的顶点P时,m的值是-2或0.
看了 附加题已知二次函数y=x2+...的网友还看了以下:
已知一次函数的图象过点(0,-1)和(-1,-2).(1)求一次函数表达式(2)若一条直线与此一次 2020-04-08 …
已知一次函数图像经过(3,5)和0(—4,—9)两点 (1)求此一次函数的表达式 (2)若点(a, 2020-05-16 …
1.用待定系数法可以确定一次函数表达式,类似的,用(填 )也可以确定二次函数表达式,通常,要确定函 2020-05-16 …
,这个一次函数的表达式是?一次函数y=kx+b的图像与函数y=-1/2x+1的图像平行,且和一次函 2020-05-20 …
2道高一的复合函数题目1.已知f(x)是二次函数,且f(0)=0,f(x+1)=f(x)+x+1, 2020-05-22 …
已知一次函数y=f(x)满足f(x)=-4,f(1)=2,求f(x)表达式已知一次函数y=f(x) 2020-06-06 …
15,己知一次函数的图象经过A(1,6)且平行于直线y=-2x(1)求此一次函数的表达式,(215 2020-06-15 …
已知一次函数图象经过A(1,6)且平行于直线y=-2x.(1)求此一次函数的表达式 (2)若点B( 2020-06-27 …
这个正则表达式是怎么组成的表达式:(\w)((?=\1\1\1)(\1))+文本:aaafffff 2020-07-23 …
C语言!1若有条件表达式(exp)?a++:b--,则以下表达式中能完全等价于表达式(exp)的是 2020-07-23 …