早教吧作业答案频道 -->英语-->
英语翻译learningexperienceshappentousinourlifeAcowarddiesathousanddeaths,aherodiesone(这大概是一句谚语,所以我希望最好能翻译出它的本意来)Ihadneverhadthatkindofcashbefore(这里的kindof是译成种
题目详情
英语翻译
learning experiences happen to us in our life
A coward dies a thousand deaths,a hero dies one(这大概是一句谚语,所以我希望最好能翻译出它的本意来)
I had never had that kind of cash before(这里的kind of 是译成种类还是大量?)
learning experiences happen to us in our life
A coward dies a thousand deaths,a hero dies one(这大概是一句谚语,所以我希望最好能翻译出它的本意来)
I had never had that kind of cash before(这里的kind of 是译成种类还是大量?)
▼优质解答
答案和解析
1楼你在瞎说什么啊?
1.A coward dies a thousand deaths,a hero dies one.
懦夫死一千次,勇者只死一次.(就是说,胆小的人,整天活在恐惧担心之中,被吓都吓死了好几次,而勇敢的人,就只有一次真正的死亡)
2.I had never had that kind of cash before
我从来没拥有过那个币种(如法郎,英镑)的现金.(kind应翻译为种类)
3.Learning experiences happen to us in our life
抱歉,我翻译不通
1.A coward dies a thousand deaths,a hero dies one.
懦夫死一千次,勇者只死一次.(就是说,胆小的人,整天活在恐惧担心之中,被吓都吓死了好几次,而勇敢的人,就只有一次真正的死亡)
2.I had never had that kind of cash before
我从来没拥有过那个币种(如法郎,英镑)的现金.(kind应翻译为种类)
3.Learning experiences happen to us in our life
抱歉,我翻译不通
看了英语翻译learningexp...的网友还看了以下:
A是n阶矩阵,r(A+E)+r(A-E)=n,证明A^2=E稍微具体一点行不。 2020-04-05 …
设n阶实方阵A=A^2,E为n阶单位矩阵,证明:R(A)+R(A-E)=n 2020-04-05 …
一道线性代数的题:设A为n阶方阵,A不等于E,且R(A+3E)+R(A-E)=n,则A的一个特征值 2020-05-14 …
设A是n阶矩阵A^2=E,证明r(A+E)+r(A-E)=n,的一步证明过程不懂由A^2=E,得A 2020-05-14 …
设n方阵A满足A^2=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n 2020-05-15 …
设n阶矩阵A满足A*A=A,E为n阶单位阵,证明:R(A)+R(A-E)=n 2020-05-15 …
设A为n*n矩阵,证明:如果A^2=E,那么R(A+E)+R(A-E)=n 2020-05-15 …
A为n阶矩阵,A^2=A,E为单位矩阵,证明r(A)+r(A-E)=n 2020-06-18 …
线性代数求解有n阶矩阵A,满足(A+E)(A-E)=0,怎么得出R(A+E)+R(A-E)≤n不懂 2020-06-28 …
1、已知n阶矩阵A满足:R(A+E)+R(A-E)=n,证A(A+2E)(A+4E)-3(A+2E) 2020-11-03 …