早教吧作业答案频道 -->数学-->
如图,在△ABC中,P为中线AM上任一点,CP的延长线交AB于D,BP的延长线交AC于E,连接DE.求证DE∥BC
题目详情
如图,在△ABC中,P为中线AM上任一点,CP的延长线交AB于D,BP的延长线交AC于E,连接DE.求证DE∥BC
▼优质解答
答案和解析
证明:
在AM的延长线上取一点N,使PM=MN,连接BN,CN
又∵BM=CM
∴四边形BNCP是平行四边形【对角线互相平分的四边形是平行四边形】
∴DC//BN =>AD/AB=AP/AN
BE//NC =>AE/AC=AP/AN
∴AD/AB=AE/AC
∴DE//BC
【★若平行线的这些定理没学,则用下面的★】
∵DC//BN ,∴⊿ADP∽⊿ABN,=>AD/AB=AP/AN
∵BE//NC,∴⊿AEP∽⊿ACN,=>AE/AC=AP/AN
∴AD/AB=AE/AC
∵∠DAE=∠BAC【公共角】
∴⊿ADE∽⊿ABC【对应边成比例夹角相等】
∴∠ADE=∠ABC
∴DE//BC
在AM的延长线上取一点N,使PM=MN,连接BN,CN
又∵BM=CM
∴四边形BNCP是平行四边形【对角线互相平分的四边形是平行四边形】
∴DC//BN =>AD/AB=AP/AN
BE//NC =>AE/AC=AP/AN
∴AD/AB=AE/AC
∴DE//BC
【★若平行线的这些定理没学,则用下面的★】
∵DC//BN ,∴⊿ADP∽⊿ABN,=>AD/AB=AP/AN
∵BE//NC,∴⊿AEP∽⊿ACN,=>AE/AC=AP/AN
∴AD/AB=AE/AC
∵∠DAE=∠BAC【公共角】
∴⊿ADE∽⊿ABC【对应边成比例夹角相等】
∴∠ADE=∠ABC
∴DE//BC
看了如图,在△ABC中,P为中线A...的网友还看了以下:
如图,在Rt三角形ABC中,角BAC=90度,AB=AC,P为BC延长线上任意一点,过B、C两点分 2020-06-04 …
如图,在△ABC中,AB=AC(1)P为BC上的中点,求证:AB2-AP2=PB•PC;(2)若P 2020-06-12 …
如图甲所示,在△ABC中,AB=AC,在底边BC上有任意一点P,则P点到两腰的距离之和等于定长(腰 2020-07-07 …
如图甲所示,在△ABC中,AB=AC,在底边BC上有任意一点P,则P点到两腰的距离之和等于定长(腰 2020-07-07 …
在△ABC中,AB=AC,P是BC上任意一点.(1)如图①,若P是BC边上任意一点,PF⊥AB于点 2020-07-09 …
在菱形ABCD中,∠A=60度,点P主直线AB上一点,过点P作PM垂直直线AD于M,作PN垂直于N 2020-07-22 …
在正方形ABCD中,M是BC边上任意一点(不包括端点BC),P是BC延长线上一点,N是角DCP的平 2020-07-30 …
如图甲所示,在△ABC中,AB=AC,在底边BC上有任意一点P,则P点到两腰的距离之和等于定长(腰 2020-07-31 …
直线y=-x+2与x轴y轴交于AB两点,C在y轴的负半轴上,且OC=OB在OA延长线上任取一点P作P 2020-11-28 …
在三角形ABC中,AB=AC(1)若P是BC边上的中点,连接AP,求证BP乘CP等于AB方-AP方2 2020-12-25 …