早教吧作业答案频道 -->数学-->
在三角形ABC中,AB=AC(1)若P是BC边上的中点,连接AP,求证BP乘CP等于AB方-AP方2)若P是BC边上的任意一点,上面结论还成立吗?请说明理由;3)若P是BC边延长线上一点,线段AB.AP.BP.CP之间有什么样的关系?请
题目详情
在三角形ABC中,AB=AC
(1)若P是BC边上的中点,连接AP,求证BP乘CP等于AB方-AP方
2)若P是BC边上的任意一点,上面结论还成立吗?请说明理由;
3)若P是BC边延长线上一点,线段AB.AP.BP.CP之间有什么样的关系?请证明你的结论.
(1)若P是BC边上的中点,连接AP,求证BP乘CP等于AB方-AP方
2)若P是BC边上的任意一点,上面结论还成立吗?请说明理由;
3)若P是BC边延长线上一点,线段AB.AP.BP.CP之间有什么样的关系?请证明你的结论.
▼优质解答
答案和解析
1)因为AB=AC,P是BC的中点
所以AP⊥BC,且AP=CP(三线合一)
在直角三角形ABP中,由勾股定理,得AB^2=AP^2+BP^2
即AB^2-AP^2=BP^2=BP*CP
2)过A作AF⊥BC,垂足为F
下面以P在线段BF上为例,即P靠近点B,其它同理,
在直角三角形ABF中,由勾股定理,得AB^2=AF^2+BF^2
在直角三角形APF中,由勾股定理,得AP^2=AF^2+PF^2,
两式相减,得,
AB^2-AP^2=(AF^2+BF^2)-(AF^2+PF^2)=BF^2-PF^2=(BF+PF)(BF-PF)
因为AB=AC,AF⊥BC
所以BF=CF(三线合一)
所以(BF+PF)(BF-PF)=(FC+PF)(BF-PF)=BP*PC
3)若P是BC的延长线上一点,线段AB.AP.BP.CP关系为AP^2-AB^2=BP*PC
理由
过A作AF⊥BC,垂足为F
下面以P在线段BC的延长线上为例,其它同理,
在直角三角形ACF中,由勾股定理,得AB^2=AC^2=AF^2+PF^2
在直角三角形APF中,由勾股定理,得AP^2=AF^2+PF^2,
两式相减,得,
AP^2-AB^2=(AF^2+PF^2)-(AF^2+FC^2)=PF^2-FC^2=(PF+FC)(PF-FC)
因为AB=AC,AF⊥BC
所以BF=CF(三线合一)
所以AP^2-AB^2=BP*PC
所以AP⊥BC,且AP=CP(三线合一)
在直角三角形ABP中,由勾股定理,得AB^2=AP^2+BP^2
即AB^2-AP^2=BP^2=BP*CP
2)过A作AF⊥BC,垂足为F
下面以P在线段BF上为例,即P靠近点B,其它同理,
在直角三角形ABF中,由勾股定理,得AB^2=AF^2+BF^2
在直角三角形APF中,由勾股定理,得AP^2=AF^2+PF^2,
两式相减,得,
AB^2-AP^2=(AF^2+BF^2)-(AF^2+PF^2)=BF^2-PF^2=(BF+PF)(BF-PF)
因为AB=AC,AF⊥BC
所以BF=CF(三线合一)
所以(BF+PF)(BF-PF)=(FC+PF)(BF-PF)=BP*PC
3)若P是BC的延长线上一点,线段AB.AP.BP.CP关系为AP^2-AB^2=BP*PC
理由
过A作AF⊥BC,垂足为F
下面以P在线段BC的延长线上为例,其它同理,
在直角三角形ACF中,由勾股定理,得AB^2=AC^2=AF^2+PF^2
在直角三角形APF中,由勾股定理,得AP^2=AF^2+PF^2,
两式相减,得,
AP^2-AB^2=(AF^2+PF^2)-(AF^2+FC^2)=PF^2-FC^2=(PF+FC)(PF-FC)
因为AB=AC,AF⊥BC
所以BF=CF(三线合一)
所以AP^2-AB^2=BP*PC
看了在三角形ABC中,AB=AC(...的网友还看了以下:
一轮复习二次函数题目函数F(x)=ax^2+(b+1)x+b-2(a不等于0)若存在实数P使F(P) 2020-03-30 …
下列公式为永真公式的是(14)。A.(P∨Q)→RB.p→(P∨Q)C.(P∨Q)→(P∧Q)D.( 2020-05-26 …
事件A、B相互独立,已知P(A)=p,P(B)=q,求P(A∪非B),P(非A∪非B).最好明了清 2020-06-12 …
如图1,抛物线y=-x2+2bx+c(b>0)与y轴交于点C,点P为抛物线顶点,分别作点P,C关于 2020-06-12 …
设A、B、C为事件,P(ABC)>0,如果P(AB|C)=P(A|C)P(B|C),则()A.P( 2020-07-20 …
一个C指针问题#include#defineN10int*fun(inta[N],intn){in 2020-07-23 …
三角形周长面积问题“三角形三边为a,b,c,则面积S=根号[p*(p-a)*(p-b)*(p-c) 2020-07-31 …
已知p:关于x的不等式|x-1|+|x-3|<m有解,q:f(x)=(7-3m)x为减函数,则p成 2020-08-03 …
经过下列语句intj,a[10],*p;定义后,下列语句合法的是()A.p=p+2B.p=经过下列语 2020-11-06 …
关于lucas定律解决大组合数取模问题,求救!我不想要复杂的证明过程,我想知道怎么使用.lucas定 2020-12-18 …