早教吧作业答案频道 -->数学-->
如图,在Rt三角形ABC中,角BAC=90度,AB=AC,P为BC延长线上任意一点,过B、C两点分别作直线AP的垂线BE、CF,E、F分别为垂足.(1)求证:BE+CF=EF(2)若P为线段BC上的任一点,其他条件不变,试问:线段BE、CF
题目详情
如图,在Rt三角形ABC中,角BAC=90度,AB=AC,P为BC延长线上任意一点,过B、C两点分别作直线AP的垂线BE、CF,E、F分别为垂足.(1)求证:BE+CF=EF(2)若P为线段BC上的任一点,其他条件不变,试问:线段BE、CF、EF的长度之间是否存在某种确定的数量关系?请画出图形,并证明你的结论.
▼优质解答
答案和解析
图形请你自己画吧
证明:(1) 由过B、C两点分别作直线AP的垂线BE、CF,E、F分别为垂足可知:∠BEA=∠AFC=90°
∵ ∠BAC=90°
∴ ∠CAF+∠EAB =180°-∠BAC =180°-90°=90°
又在直角三角形AEB中 ∠EBA+∠EAB=180°-∠BEA=90°
∴ ∠CAF=∠EBA
在△EBA 和 △ACF中,AB=AC(已知),∠BEA=∠AFC=90°,∠CAF=∠EBA
∴ △EBA ≌ △ACF
∴ BE = AF,EA=CF
∴ BE+CF=EA+AF =EF
(2) 若P点靠近B点,有CF-BE=EF;若P点靠近C点,有BE-CF=EF
现证明如下:由过B、C两点分别作直线AP的垂线BE、CF,E、F分别为垂足知,∠BEA=∠AFC=90°
∵ ∠BAC=90°
.∴ ∠BAE + ∠FAC=90°
又 在直角三角形ABE中,∠EBA+∠BAE=90°
∴ ∠EBA = ∠FAC
在△EBA和△AFC中,AB=AC,∠BEA=∠AFC=90°,∠EBA = ∠FAC
∴ △EBA ≌ △AFC
∴ AE=CF,AF=BE
∴ CF-BE = AE -AF = EF
同理可证 BE-CF=EF
证明:(1) 由过B、C两点分别作直线AP的垂线BE、CF,E、F分别为垂足可知:∠BEA=∠AFC=90°
∵ ∠BAC=90°
∴ ∠CAF+∠EAB =180°-∠BAC =180°-90°=90°
又在直角三角形AEB中 ∠EBA+∠EAB=180°-∠BEA=90°
∴ ∠CAF=∠EBA
在△EBA 和 △ACF中,AB=AC(已知),∠BEA=∠AFC=90°,∠CAF=∠EBA
∴ △EBA ≌ △ACF
∴ BE = AF,EA=CF
∴ BE+CF=EA+AF =EF
(2) 若P点靠近B点,有CF-BE=EF;若P点靠近C点,有BE-CF=EF
现证明如下:由过B、C两点分别作直线AP的垂线BE、CF,E、F分别为垂足知,∠BEA=∠AFC=90°
∵ ∠BAC=90°
.∴ ∠BAE + ∠FAC=90°
又 在直角三角形ABE中,∠EBA+∠BAE=90°
∴ ∠EBA = ∠FAC
在△EBA和△AFC中,AB=AC,∠BEA=∠AFC=90°,∠EBA = ∠FAC
∴ △EBA ≌ △AFC
∴ AE=CF,AF=BE
∴ CF-BE = AE -AF = EF
同理可证 BE-CF=EF
看了 如图,在Rt三角形ABC中,...的网友还看了以下:
数学“M是P的真子集”与“M是P的真子集且P不包含于M”有什么区别?集合M={x|x=1+a^2, 2020-05-20 …
如图所示,两个底面积不同的圆柱形容器内装有同种液体,液面高度相同.液体对容器底部的压强分别为p甲和 2020-05-23 …
数三全书概率论P415的例1.2设事件A,B和A∪B的概率分别为0.2,0.3和0.4,则P(A∪ 2020-06-13 …
设有四张卡片分别标以数字1,2,3,4.今任取一张.设事件A为取到4或2,事件B为取到4或3,事件 2020-06-18 …
潜水艇在水下100米处潜游.它再下潜50米,在此过程中,潜水艇所受压强p与压力F的变化情况是()A 2020-06-28 …
P(A∩B)和P(A)∩P(B)两者相等的结论是A和B事件相互独立.那么,如果A和B事件没有相互独 2020-07-29 …
若命题P:x∈A∩B,则┐P是()A.x不属于A∪BB.x不属于A或x不属于BC.x不属于A且x不 2020-08-01 …
一道概率论的题目,达人们速度进啊++++++++++++分不多,请大家帮个忙,P(A)=P(B)=P 2020-11-08 …
如图所示,两容器底面积相同,形状不同,内装质量相同的水,两容器底部所受水的压强分别是p甲、p乙,所受 2020-11-30 …
别抱怨别人不尊重你,要先问问自己是否尊重别人。这句话告诉我们()A.要赢得他人的尊重,首先要尊重他人 2020-12-05 …