早教吧作业答案频道 -->数学-->
已知,如图抛物线y=ax2+3ax+c(a》0)与外轴交与点C,与x交与A,B两点已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.(1)求抛物线的解
题目详情
已知,如图抛物线y=ax2+3ax+c(a》0)与外轴交与点C,与x交与A,B两点
已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由
已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由
▼优质解答
答案和解析
您好:⑴OC=OB=3,C(0,-3),∴c=-3
Y=aX^2+3aX-3过B(1,0),∴0=a+3a-3,a=3/4.
解析式为:Y=3/4X^2+9/4X-3.
⑵Y=3/4(X^2+3X-4)=3/4(X-1)(X+4),令Y=0得X=1或-4,∴A(-4,0),
设D(m,3/4m^2+9/4m-3),过D作DM⊥X轴于N交AC于M,
易得直线AC为Y=-3/4X-3,M(m,-m-3),
DM=-3/4m-3-(3/4m^2+9/4m-3)=-3/4m^2-3m=-3/4(m^2+2)^2+3,
SΔACD=SΔADM+SΔCDM=1/2DM*AN+1/2DM*ON=1/2DM(AN+ON)=1/2DM*OA.
=-3/2(m+2)^2+6,
∴当m=-2时,S四边形ABC最大=SΔACD+SΔABC=6+15/2=27/2.
⑶令Y=3,得3/4X^2+9/4X-3=3,X^2+3X=8,(X+3/2)^2=41/4,
X=-3/2±√41/2,
∴P1(-3/2+√41/2,3),P2(-3/2-√41/2,3).
希望对您的学习有帮助
满意请采纳O(∩_∩)O谢谢
欢迎追问O(∩_∩)O谢谢
Y=aX^2+3aX-3过B(1,0),∴0=a+3a-3,a=3/4.
解析式为:Y=3/4X^2+9/4X-3.
⑵Y=3/4(X^2+3X-4)=3/4(X-1)(X+4),令Y=0得X=1或-4,∴A(-4,0),
设D(m,3/4m^2+9/4m-3),过D作DM⊥X轴于N交AC于M,
易得直线AC为Y=-3/4X-3,M(m,-m-3),
DM=-3/4m-3-(3/4m^2+9/4m-3)=-3/4m^2-3m=-3/4(m^2+2)^2+3,
SΔACD=SΔADM+SΔCDM=1/2DM*AN+1/2DM*ON=1/2DM(AN+ON)=1/2DM*OA.
=-3/2(m+2)^2+6,
∴当m=-2时,S四边形ABC最大=SΔACD+SΔABC=6+15/2=27/2.
⑶令Y=3,得3/4X^2+9/4X-3=3,X^2+3X=8,(X+3/2)^2=41/4,
X=-3/2±√41/2,
∴P1(-3/2+√41/2,3),P2(-3/2-√41/2,3).
希望对您的学习有帮助
满意请采纳O(∩_∩)O谢谢
欢迎追问O(∩_∩)O谢谢
看了已知,如图抛物线y=ax2+3...的网友还看了以下:
圆锥曲线的已知椭圆C:x^2/2+y^2=1的右焦点为F,右准线为l,点A属于l,线段AF交C于点 2020-04-08 …
已知抛物线C:(y+3/4)^2=x对于过原点的直线L,曲线C上总存在两点已知抛物线C:(y+3/ 2020-04-11 …
已知直线l:y=kx+1交曲线C:y=ax^2(a>0)于P、Q两点,M为PQ中点,分别过P、Q两 2020-05-15 …
已知P在直线l:x+y-1=0上,Q在圆C:(x-2)2+(y-2)2=1上.(1)过P作圆C的切 2020-06-03 …
在平面直角坐标系xoy中,已知A(0,b),圆C的半径为1,圆心在直线l:y=2x-4上.1.若在 2020-06-14 …
如图,已知椭圆C:x∧2/a∧2+y∧2/b∧2=1的离心率为√3/2,左焦点F(-c,0)到直线 2020-06-21 …
如图已知抛物线C:y^2=2px和圆M:(x-4)^2+y^2=1,过抛物线上一点H(x,y)(y 2020-07-26 …
已知抛物线C:y^2=4x的焦点为F,直线L经过点F且与抛物线C相交于点A,B.已知抛物线C:y^ 2020-07-29 …
解析几何31.已知圆C:x^2+(y-1)^2=5,直线L:mx-y+1-m=0,若L与圆C交与A 2020-08-02 …
已知圆C的方程(x-1)^2+(y-1)^2=4,直线l:y=x+m,求档m为何值时,1直线平分圆2 2021-01-12 …