早教吧作业答案频道 -->数学-->
解析几何31.已知圆C:x^2+(y-1)^2=5,直线L:mx-y+1-m=0,若L与圆C交与A,B两点且AB的绝对值=跟17,求直线L的斜率?2.已知圆心在直线y=-2x上,且与直线x+y=1在点(2,-1)处相切,求此圆的方程?3.已知圆心为(2,-3
题目详情
解析几何3
1.已知圆C:x^2+(y-1)^2=5,直线L:mx-y+1-m=0,若L与圆C交与A ,B两点且AB的绝对值=跟17,求直线L的斜率?
2.已知圆心在直线y=-2x上,且与直线x+y=1在点(2,-1)处相切,求此圆的方程?
3.已知圆心为(2,-3)它的一条直径两端落在坐标轴上,求此圆的方程?
要详细步骤
1.已知圆C:x^2+(y-1)^2=5,直线L:mx-y+1-m=0,若L与圆C交与A ,B两点且AB的绝对值=跟17,求直线L的斜率?
2.已知圆心在直线y=-2x上,且与直线x+y=1在点(2,-1)处相切,求此圆的方程?
3.已知圆心为(2,-3)它的一条直径两端落在坐标轴上,求此圆的方程?
要详细步骤
▼优质解答
答案和解析
1.由mx-y+1-m=0得y=mx+1-m.代入圆方程,整理得(m²+1)x²-2m²x+m²-5=0.
解方程得 x1=[m²+√(4m²+5)]/(m²+1),x2==[m²-√(4m²+5)]/(m²+1).
y1=mx1+1-m,y2=mx2+1-m.
∵AB的绝对值=跟17,
∴(x1-x2)²+(y1-y2)²=17,即 m=±√3.
∴,直线L是y=±√3(x-1)+1.
故直线L的斜率=±√3.
2.∵过点(2,-1)且与直线x+y=1垂直是y=x-3.
解方程组 y=x-3,y=-2x,得 x=1,y=-2.即此园的圆心坐标是(1,-2).
又点(2,-1)与点(1,-2)距离=√2.
∴此圆的方程是 (x-1)²+(y+2)²=2.
3.设此圆的方程为(x-2)²+(y+3)²=a,
则一条直径两端落在坐标轴上的是:x1=2+√(a-9),y1=0;
x2=0,y2=-3-√(a-4).
∴它们中点的横坐标是:x0=[2+√(a-9)]/2,
令x0=2,得a=13.
故此圆的方程是 (x-2)²+(y+3)²=13.
解方程得 x1=[m²+√(4m²+5)]/(m²+1),x2==[m²-√(4m²+5)]/(m²+1).
y1=mx1+1-m,y2=mx2+1-m.
∵AB的绝对值=跟17,
∴(x1-x2)²+(y1-y2)²=17,即 m=±√3.
∴,直线L是y=±√3(x-1)+1.
故直线L的斜率=±√3.
2.∵过点(2,-1)且与直线x+y=1垂直是y=x-3.
解方程组 y=x-3,y=-2x,得 x=1,y=-2.即此园的圆心坐标是(1,-2).
又点(2,-1)与点(1,-2)距离=√2.
∴此圆的方程是 (x-1)²+(y+2)²=2.
3.设此圆的方程为(x-2)²+(y+3)²=a,
则一条直径两端落在坐标轴上的是:x1=2+√(a-9),y1=0;
x2=0,y2=-3-√(a-4).
∴它们中点的横坐标是:x0=[2+√(a-9)]/2,
令x0=2,得a=13.
故此圆的方程是 (x-2)²+(y+3)²=13.
看了 解析几何31.已知圆C:x^...的网友还看了以下:
光线沿AB的方向入射,经过B点,C点两处的光镜反射后成光线CD.若A,B,C,的坐标分别为光线沿A 2020-04-27 …
一质点从A开始做初速度为零的匀加速直线运动中,先后经过B点和C点.已知它的加速度为10m/s2,经 2020-05-14 …
一个物体从高处A点自由下落,经过B点到C点,已知经B点时的速度是到C点时间的速度的3/4,且B,C 2020-05-16 …
】物体从A点做初速度为2m/s的匀加速直线运动,经过2s到达B点,又经过一段时间到达C点物体从A点 2020-05-17 …
1.某同学蹦极,橡皮绳未拉伸时长45米,绳子绷直时,人的速度是多少2.一个物体从高处A点自由下落, 2020-05-21 …
甲乙两辆汽车分别从A、B两地同时相对开出,乙每小时行全程的1/10,甲比乙早1/3小时到达A、B两 2020-06-05 …
某质点做匀减速直线运动,依次经过A、B、C三点,最后停在D点.已知AB=6m,BC=4m,从A点运 2020-07-10 …
抛物线y=ax2-3/2x-2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为 2020-07-10 …
如下图示,质量m=60kg的高山滑雪运动员,从A点由静止开始沿雪道滑下,从B点水平飞出后又落杂与水平 2020-10-30 …
圆心为O、半径为R的光滑圆弧AC与倾角θ=30°的光滑斜面BC固定在一起,如图所示,其中O、C、B三 2020-11-01 …