早教吧作业答案频道 -->数学-->
解析几何31.已知圆C:x^2+(y-1)^2=5,直线L:mx-y+1-m=0,若L与圆C交与A,B两点且AB的绝对值=跟17,求直线L的斜率?2.已知圆心在直线y=-2x上,且与直线x+y=1在点(2,-1)处相切,求此圆的方程?3.已知圆心为(2,-3
题目详情
解析几何3
1.已知圆C:x^2+(y-1)^2=5,直线L:mx-y+1-m=0,若L与圆C交与A ,B两点且AB的绝对值=跟17,求直线L的斜率?
2.已知圆心在直线y=-2x上,且与直线x+y=1在点(2,-1)处相切,求此圆的方程?
3.已知圆心为(2,-3)它的一条直径两端落在坐标轴上,求此圆的方程?
要详细步骤
1.已知圆C:x^2+(y-1)^2=5,直线L:mx-y+1-m=0,若L与圆C交与A ,B两点且AB的绝对值=跟17,求直线L的斜率?
2.已知圆心在直线y=-2x上,且与直线x+y=1在点(2,-1)处相切,求此圆的方程?
3.已知圆心为(2,-3)它的一条直径两端落在坐标轴上,求此圆的方程?
要详细步骤
▼优质解答
答案和解析
1.由mx-y+1-m=0得y=mx+1-m.代入圆方程,整理得(m²+1)x²-2m²x+m²-5=0.
解方程得 x1=[m²+√(4m²+5)]/(m²+1),x2==[m²-√(4m²+5)]/(m²+1).
y1=mx1+1-m,y2=mx2+1-m.
∵AB的绝对值=跟17,
∴(x1-x2)²+(y1-y2)²=17,即 m=±√3.
∴,直线L是y=±√3(x-1)+1.
故直线L的斜率=±√3.
2.∵过点(2,-1)且与直线x+y=1垂直是y=x-3.
解方程组 y=x-3,y=-2x,得 x=1,y=-2.即此园的圆心坐标是(1,-2).
又点(2,-1)与点(1,-2)距离=√2.
∴此圆的方程是 (x-1)²+(y+2)²=2.
3.设此圆的方程为(x-2)²+(y+3)²=a,
则一条直径两端落在坐标轴上的是:x1=2+√(a-9),y1=0;
x2=0,y2=-3-√(a-4).
∴它们中点的横坐标是:x0=[2+√(a-9)]/2,
令x0=2,得a=13.
故此圆的方程是 (x-2)²+(y+3)²=13.
解方程得 x1=[m²+√(4m²+5)]/(m²+1),x2==[m²-√(4m²+5)]/(m²+1).
y1=mx1+1-m,y2=mx2+1-m.
∵AB的绝对值=跟17,
∴(x1-x2)²+(y1-y2)²=17,即 m=±√3.
∴,直线L是y=±√3(x-1)+1.
故直线L的斜率=±√3.
2.∵过点(2,-1)且与直线x+y=1垂直是y=x-3.
解方程组 y=x-3,y=-2x,得 x=1,y=-2.即此园的圆心坐标是(1,-2).
又点(2,-1)与点(1,-2)距离=√2.
∴此圆的方程是 (x-1)²+(y+2)²=2.
3.设此圆的方程为(x-2)²+(y+3)²=a,
则一条直径两端落在坐标轴上的是:x1=2+√(a-9),y1=0;
x2=0,y2=-3-√(a-4).
∴它们中点的横坐标是:x0=[2+√(a-9)]/2,
令x0=2,得a=13.
故此圆的方程是 (x-2)²+(y+3)²=13.
看了 解析几何31.已知圆C:x^...的网友还看了以下:
轨迹方程数学题已知圆C:x^2+(y-1)^2=5,直线l:mx-y+1-m=0.(1)求证:对m 2020-04-27 …
已知圆c:x2+(y-1)2=5,直线l:x-my+m-1=01小时内求解已知圆c:x2+(y-1 2020-06-03 …
已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆 2020-06-08 …
(2010•温州模拟)如图,已知圆A过定点B(0,2),圆心A在抛物线C:x2=4y上运动,MN为 2020-06-23 …
如图所示,已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动 2020-07-19 …
已知直线l经过点p(1/2,1)倾斜角a=π/6,在极坐标系下,圆c的极坐标方程为ρ=√2cos( 2020-07-22 …
求运动中的两圆切点两圆A(ax,ay),B(bx,by)半径为R,初始时相距为d(d>2*R),两 2020-07-31 …
高中问题,求运动中的两圆切点两圆A(ax,ay),B(bx,by)半径为R,初始时相距为d(d>2 2020-07-31 …
已知圆C:x2+y2-6x-8y+21=0,直线l过定点A(1,0).(1)求圆心C的坐标和圆的半径 2020-10-31 …
设圆C与两圆,中的一个内切,另一个外切.(1)求C的圆心轨迹L的方程;(2)设直线l是圆O:在P(x 2021-01-11 …