早教吧作业答案频道 -->数学-->
△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,(1)求证:△BDF∽△CEF;(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;(3)已知A、D、F
题目详情
| △ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC, (1)求证:△BDF∽△CEF; (2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值; (3)已知A、D、F、E四点共圆,已知tan∠EDF= ,求此圆直径. |
▼优质解答
答案和解析
| (1)证明见解析 (2)S与m之间的函数关系为:S═﹣ (m﹣2) 2 +3 (其中0<m<4).当m=2时,S取到最大值,最大值为3 (3)此圆直径长为 . |
| 试题分析:(1)由已知可知∠BDF=∠CEF,∠B=∠C,所以得证. (2)四边形ADFE面积S可以看成△ADF与△AEF的面积之和,这两个三角形均为直角三角形,在△BDF与△CEF中,由三角函数可以用m表示出BD、DF、CE、EF的长,进而可得AD、AE的长,从而可以用含m的代数式表示S,然后通过配方,转化为二次函数的最值问题,就可以解决问题. (3)由已知易知AF就是圆的直径,利用圆周角定理将∠EDF转化为∠EAF.在△AFC中,知道tan∠EAF、∠C、AC,通过解直角三角形就可求出AF长. 试题解析:(1):∵DF⊥AB,EF⊥AC, ∴∠BDF=∠CEF=90°. ∵△ABC为等边三角形, ∴∠B=∠C=60°. ∵∠BDF=∠CEF,∠B=∠C, ∴△BDF∽△CEF. (2)∵∠BDF=90°,∠B=60°, ∴sin60°= = ,cos60°= = .∵BF=m, ∴DF= m,BD= .∵AB=4, ∴AD=4﹣ .∴S △ ADF = AD•DF= ×(4﹣ )× m=﹣ m 2 + m.同理:S △ AEF = AE•EF= ×(4﹣ )× (4﹣m)=﹣ m 2 +2 .∴S=S △ ADF +S △ AEF =﹣ m 2 + m+2 =﹣ (m 2 ﹣4m﹣8)=﹣ (m﹣2) 2 +3 .其中0<m<4.∵﹣ <0,0<2<4,∴当m=2时,S取最大值,最大值为3 .∴S与m之间的函数关系为: S═﹣ (m﹣2) 2 +3 (其中0<m<4).当m=2时,S取到最大值,最大值为3 .(3)如图2, ∵A、D、F、E四点共圆, ∴∠EDF=∠EAF. ∵∠ADF=∠AEF=90°, ∴AF是此圆的直径. ∵tan∠EDF= ,∴tan∠EAF= .∴ = .∵∠C=60°, ∴ =tan60°= .设EC=x,则EF=
作业帮用户
2017-10-12
举报
![]() |
看了△ABC为等边三角形,边长为a...的网友还看了以下:
1.如图A点表示的数为a=-6.B表示的数为b=12.2.若|x-2|+3|y-3|=y-3,求x 2020-05-16 …
抛物线y=ax的平方+bx+c经过点A(1,0),顶点坐标为B(2,负二分之一)(1)求a,b,c 2020-05-16 …
数学问题设a,b,n为整数列出n^2(mod4)与a^2+b^2(mod4)的所有可能余数(n^2 2020-07-13 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点为B(0,-2),斜率为1的直线 2020-07-13 …
观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32, 2020-07-17 …
12乘以231=132乘以2113乘以341=143乘以3123乘以352=253乘以32……设这 2020-07-19 …
设上题答数为a,a的个位数字为b,2×b的个位数字为c.如图,三个同心圆的半径依次为c-24,c+ 2020-08-01 …
1.已知直线y=-x+4与x轴交于点A,直线上有一点M,使△AOM的面积为8,求点M的坐标.2.已知 2020-11-27 …
已知椭圆方程为B(2,0)过点B作直线l与椭圆交与E、F两点,求三角形OBE与三角形OBF的面积比已 2020-11-27 …
设a,b,n为整数,列出n^2(mod4)与a^2+b^2(mod4)的所有可能余数(n^2为n的2 2020-12-17 …
,求此圆直径.
(m﹣2) 2 +3
(其中0<m<4).当m=2时,S取到最大值,最大值为3
.
=
,cos60°=
=
.
.
m 2 +
m.
AE•EF
)×
(4﹣m)
m 2 +2
m 2 +
,
=
.
=tan60°=
.
扫描下载二维码