早教吧作业答案频道 -->其他-->
设函数f(x)满足:①对任意实数m,n都有f(m+n)+f(m-n)=2f(m)f(n);②对任意m∈R,有f(1+m)=f(1-m);③f(x)不恒为0,且当x∈(0,1]时,f(x)<1.(1)求f(0),f(1)的值;(2
题目详情
设函数f(x)满足:
①对任意实数m,n都有f(m+n)+f(m-n)=2f(m)f(n);
②对任意m∈R,有f(1+m)=f(1-m);
③f(x)不恒为0,且当x∈(0,1]时,f(x)<1.
(1)求f(0),f(1)的值;
(2)判断f(x)的奇偶性,并给出你的证明;
(3)定义:“若存在非零常数T,使得对函数F(x)定义域中的任意一个x,均有F(x+T)=F(x),则称F(x)为以T为周期的周期函数”.试证明:函数f(x)为周期函数,并求出f(
)+f(
)+f(
)+…+f(
)的值.
①对任意实数m,n都有f(m+n)+f(m-n)=2f(m)f(n);
②对任意m∈R,有f(1+m)=f(1-m);
③f(x)不恒为0,且当x∈(0,1]时,f(x)<1.
(1)求f(0),f(1)的值;
(2)判断f(x)的奇偶性,并给出你的证明;
(3)定义:“若存在非零常数T,使得对函数F(x)定义域中的任意一个x,均有F(x+T)=F(x),则称F(x)为以T为周期的周期函数”.试证明:函数f(x)为周期函数,并求出f(
| 1 |
| 3 |
| 2 |
| 3 |
| 3 |
| 3 |
| 2017 |
| 3 |
▼优质解答
答案和解析
(1)由于f(x)不恒为0,故存在x0,使f(x0)≠0,令m=x0,n=0,
则f(x0)+f(x0)=2f(x0)f(0),
则f(0)=1.令m=n=1,则f(2)+f(0)=2f2(1),
又f(0)=f(2),则f2(1)=1,则f(1)=±1,
由已知,f(1)<1,故f(1)=-1;
(2)令m=0,n=x,得,f(x)+f(-x)=2f(0)f(x)=2f(x),
即有f(-x)=f(x),即有f(x)为偶函数;
(3)由f(1+m)=f(1-m)得f(-x)=f(2+x),又f(x)为偶函数,
则f(x+2)=f(x),即f(x)以2为周期的周期函数,
令m=n=
,f(
)+f(0)=2f2(
),即f(
)+1=2f2(
),
再令m=
,n=
得,f(1)+f(
)=2f(
)f(
),即f(
)-1=2f(
)f(
).
而f(
)<1,解得,f(
)=
,f(
)=-
,由条件得,f(
)=f(
),f(
)=f(
),
故f(
)+f(
)+…+f(
)=0,f(x)以2为周期的周期函数,
则f(
)+f(
)+f(
)+…+f(
)=336×0+f(
)=f(
)=
.
则f(x0)+f(x0)=2f(x0)f(0),
则f(0)=1.令m=n=1,则f(2)+f(0)=2f2(1),
又f(0)=f(2),则f2(1)=1,则f(1)=±1,
由已知,f(1)<1,故f(1)=-1;
(2)令m=0,n=x,得,f(x)+f(-x)=2f(0)f(x)=2f(x),
即有f(-x)=f(x),即有f(x)为偶函数;
(3)由f(1+m)=f(1-m)得f(-x)=f(2+x),又f(x)为偶函数,
则f(x+2)=f(x),即f(x)以2为周期的周期函数,
令m=n=
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
再令m=
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
而f(
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 5 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
故f(
| 1 |
| 3 |
| 2 |
| 3 |
| 6 |
| 3 |
则f(
| 1 |
| 3 |
| 2 |
| 3 |
| 3 |
| 3 |
| 2017 |
| 3 |
| 2017 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
看了 设函数f(x)满足:①对任意...的网友还看了以下:
f(x+y)=f(x)f(y),求f'(x)与f(x)的关系?设f在正无穷到负无穷有定义,且对所有 2020-05-13 …
已知函数f(x)对任意实数x1,x2,都有f(x1x2)=f(x1)+f(x2)成立原题是:已知函 2020-05-17 …
关于偏导数,导数和全微分的问题1、用链式法则求下列复合函数的偏导数或导数(1)设z=x/y,x=e 2020-05-23 …
已知函数f(x)对任意实数x,y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)> 2020-06-12 …
多项式函数f有两个局部最大值和一个局部最小值,问f最多有几个零点?最少有几个零点?最多有几个拐点? 2020-06-30 …
若函数f(x)是定义在R上的奇函数,且对任意正数a、b都有满足f(a+b)=f(a)*f(b),试 2020-07-15 …
已知函数f(x)对任意实数x,y∈R,总有f(x)+f(y)=f(x+y)已知函数f(x)对任意实 2020-07-16 …
已知函数f(x)对任意实数x,y∈R,总有f(x)+f(y)=f(x+y)已知函数f(x)对任意实 2020-07-16 …
数分中的函数连续性问题f是R上的单调函数,g(x)=f(x+0),证明g在R上处处单调.我自己在做 2020-08-02 …
设函数f有一阶连续偏导数,求由方程f(x-y,y-z,z-x)=0所确定的函数z=z(x,y)的全微 2020-11-01 …