早教吧作业答案频道 -->数学-->
帮忙做道微积分题吧...大一的...设函数f(x)在[0,a]上连续,在(0,a)内可导,且f(0)=0,证明至少存在一点m属于(0,a)使得f(a)=(1+m)f'(m)ln(1+a)其中a>0为常数中值定理那一章的东西..
题目详情
帮忙做道微积分题吧...大一的...
设函数f(x)在[0,a]上连续,在(0,a)内可导,且f(0)=0,证明至少存在一点m属于(0,a)使得
f(a)=(1+m)f'(m)ln(1+a)
其中a>0 为常数
中值定理那一章的东西..
设函数f(x)在[0,a]上连续,在(0,a)内可导,且f(0)=0,证明至少存在一点m属于(0,a)使得
f(a)=(1+m)f'(m)ln(1+a)
其中a>0 为常数
中值定理那一章的东西..
▼优质解答
答案和解析
你好!
令g(x)=ln(1+x)
g(x)在[0,a]连续,(0,a)可导
g'(x) = 1/(1+x)
由柯西中值定理
存在m∈(0,a)使
[f(a) - f(0)] / [g(a)-g(0)] = f'(m) / g'(m)
f(a) / ln(1+a) = (1+m)f'(m)
即f(a) = (1+m)f'(m)ln(1+a)
证毕
令g(x)=ln(1+x)
g(x)在[0,a]连续,(0,a)可导
g'(x) = 1/(1+x)
由柯西中值定理
存在m∈(0,a)使
[f(a) - f(0)] / [g(a)-g(0)] = f'(m) / g'(m)
f(a) / ln(1+a) = (1+m)f'(m)
即f(a) = (1+m)f'(m)ln(1+a)
证毕
看了 帮忙做道微积分题吧...大一...的网友还看了以下:
已知二次函数y=x2+ax+a-2 (1)证明:不论a取何值,抛物线y=x2+ax+a-2的顶点Q 2020-05-16 …
函数的主值和函数值不一样,是一种规定后的,保证函数为单调的函数值,基本初等函数中是不是只有反三角函 2020-06-04 …
已知函数f(x)=x-a/x-2lnx,a∈R.(1)函数f(x)的单调性(2)偌f(x)有两已知 2020-07-13 …
已知函数f(x)=cosx+ax2-1,a∈R.(1)求证:函数f(x)是偶函数;(2)当a=1时 2020-07-20 …
已知函数f(x)=ax,g(x)=lnx,其中a∈R.(I)若函数F(x)=f(x)-g(x)有极 2020-07-22 …
1、求证:函数f(x)=-1/x-1在区间(-∞,0)上是增函数.2、证明函数y=x+1/x在(0 2020-08-01 …
已知函数f(x)=x-a/x-2lnx,a∈R(1)讨论函数f(x)的单调性(已知函数f(x)=x 2020-08-01 …
设a>0,函数f(x)=(ax+b)/(x^2+1),b为常数。(1)证明:函数f(x)的极大值点和 2020-12-08 …
函数学的好的进.1.二次函数的最值:当a>0时,函数有最值为.2.已知二次函数y=x的平方+ax+a 2020-12-23 …
1·直线(a-2)y=(3a-1)x-1,求证无论a取何值时,直线总经过第一象限.2·已知函数f(x 2020-12-23 …