早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知:如图,Rt△AOB的两直角边OA、OB分别在x轴的正半轴和y轴的负半轴上,C为OA上一点且OC=OB,抛物线y=(x-2)(x-m)-(p-2)(p-m)(m、p为常数且m+2≥2p>0)经过A、C两点.(1)用m、p

题目详情
已知:如图,Rt△AOB的两直角边OA、OB分别在x轴的正半轴和y轴的负半轴上,C为OA上一点且O C=OB,抛物线y=(x-2)(x-m)-(p-2)(p-m)(m、p为常数且m+2≥2p>0)经过A、C两点.
(1)用m、p分别表示OA、OC的长;
(2)当m、p满足什么关系时,△AOB的面积最大.
▼优质解答
答案和解析
(1)令y=0得:(x-2)(x-m)-(p-2)(p-m)=0,
x 2 -mx-2x=p 2 -pm-2p,
∴(x-p)(x+p)-x(m+2)+p(m+2)=0,
整理得:(x-p)(x-m-2+p)=0,
∴x 1 =p,x 2 =m+2-p,
∵m+2≥2p>0
∴m+2-p≥p>0,
∴OA=m+2-p,OC=P.

(2)∵OC=OB,S △AOB =
1
2
OA•OB,
∴S △AOB =
1
2
OA•OB=
1
2
P•(m+2-p),
=-
1
2
P 2 +
1
2
(m+2)•P,
∴当p=-
1
2
(m+2)
2×(-
1
2
)
=
1
2
(m+2)时,S △AOB 最大.