早教吧作业答案频道 -->数学-->
已知f1,f2分别为双曲线的左右焦点,o为原点,A为右顶点,p为双曲线左支上的任意一点若存在最小值12a,则双曲线离心率e的范围是?
题目详情


▼优质解答
答案和解析
PF1=PF2-2a.OA=a
|PF2|^2 / [|PF1|-|OA|]
=|PF2|^2 / [|PF2|-3a]
=[|PF2|^2-9a^2+9a^2] / [|PF2|-3a]
=|PF2|+3a+{9a^2 / [|PF2|-3a]}
=|PF2|-3a+{9a^2 / [|PF2|-3a]} +6a
根据基本不等式,在|PF2|-3a>0时,有|PF2|-3a+{9a^2 / [|PF2|-3a]} >=6a,
|PF2|-3a+{9a^2 / [|PF2|-3a]} +6a>=12a.
当且仅当|PF2|-3a = {9a^2 / [|PF2|-3a]},即PF2=6a时能取到=.
当P运动到左顶点时候,PF2取到最小值(PF2)min=a+c,所以必须满足(PF2)min=a+c>3a,
且(PF2)min=a+c0,且能取到PF2=6a.
解得e属于(2,5].
如果这种方法不理解的话,这里还有一种:
|pf2|-|pf1|=2a |oa|=a
原式可理解为|pf2|^2/(pf2-3a)存在最小值12a
将式子倒过来可得到1/pf2-3a/(pf2^2)
令x=1/pf2 (x=1/6a,
解得e=12a>0,
所以
PF1=PF2-2a>a
所以(PF2)min=a+c>3a,
解得e>2
所以e属于(2,5]
|PF2|^2 / [|PF1|-|OA|]
=|PF2|^2 / [|PF2|-3a]
=[|PF2|^2-9a^2+9a^2] / [|PF2|-3a]
=|PF2|+3a+{9a^2 / [|PF2|-3a]}
=|PF2|-3a+{9a^2 / [|PF2|-3a]} +6a
根据基本不等式,在|PF2|-3a>0时,有|PF2|-3a+{9a^2 / [|PF2|-3a]} >=6a,
|PF2|-3a+{9a^2 / [|PF2|-3a]} +6a>=12a.
当且仅当|PF2|-3a = {9a^2 / [|PF2|-3a]},即PF2=6a时能取到=.
当P运动到左顶点时候,PF2取到最小值(PF2)min=a+c,所以必须满足(PF2)min=a+c>3a,
且(PF2)min=a+c0,且能取到PF2=6a.
解得e属于(2,5].
如果这种方法不理解的话,这里还有一种:
|pf2|-|pf1|=2a |oa|=a
原式可理解为|pf2|^2/(pf2-3a)存在最小值12a
将式子倒过来可得到1/pf2-3a/(pf2^2)
令x=1/pf2 (x=1/6a,
解得e=12a>0,
所以
PF1=PF2-2a>a
所以(PF2)min=a+c>3a,
解得e>2
所以e属于(2,5]
看了已知f1,f2分别为双曲线的左...的网友还看了以下:
已知双曲线x^2/a^2-y^2/b^2=1的一个焦点与抛物线y^2=2px的焦点重合,抛物线焦点 2020-04-08 …
双曲线1,已知双曲线x^2-y^2/2=1的焦点为F1、F2,点M在曲线上且MF1*MF2=0求点 2020-04-26 …
已知焦点在x轴上的双曲线C的两条渐近线过坐标原点且互相垂直,双曲线C...已知焦点在x轴上的双曲线 2020-05-16 …
已知焦点在x轴上的双曲线的一条渐近线方程为y=√3x其实轴长等于2抛物线的顶点在顶点在坐标原点焦点 2020-05-23 …
可以扼要的写写过程..1.双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)与直线x=8的 2020-06-21 …
已知抛物线的焦点F与双曲线的一个焦点相同,且F到双曲线的右顶点的距离等于1,已知抛物线y^2=8x 2020-07-13 …
两题:(1):设P为双曲线x^2-y^2/12=1上的一点,F1,F2是双曲线的两个焦点,若F1: 2020-07-26 …
1.已知双曲线的焦距为14,实轴长为12,焦点在X轴上,求双曲线的标准方程2.已知抛物线顶点在原点 2020-07-30 …
1:已知双曲线上的两点P1(3,-4根号2),P2(9/4,5),求双曲线的标准方程;2:双曲线的 2020-07-30 …
1.已知双曲线C的一个焦点坐标为F(√5,0)且经过点P(√6,√2)(1)求双曲线C的标准方程( 2020-08-02 …