早教吧作业答案频道 -->数学-->
已知f1,f2分别为双曲线的左右焦点,o为原点,A为右顶点,p为双曲线左支上的任意一点若存在最小值12a,则双曲线离心率e的范围是?
题目详情


▼优质解答
答案和解析
PF1=PF2-2a.OA=a
|PF2|^2 / [|PF1|-|OA|]
=|PF2|^2 / [|PF2|-3a]
=[|PF2|^2-9a^2+9a^2] / [|PF2|-3a]
=|PF2|+3a+{9a^2 / [|PF2|-3a]}
=|PF2|-3a+{9a^2 / [|PF2|-3a]} +6a
根据基本不等式,在|PF2|-3a>0时,有|PF2|-3a+{9a^2 / [|PF2|-3a]} >=6a,
|PF2|-3a+{9a^2 / [|PF2|-3a]} +6a>=12a.
当且仅当|PF2|-3a = {9a^2 / [|PF2|-3a]},即PF2=6a时能取到=.
当P运动到左顶点时候,PF2取到最小值(PF2)min=a+c,所以必须满足(PF2)min=a+c>3a,
且(PF2)min=a+c0,且能取到PF2=6a.
解得e属于(2,5].
如果这种方法不理解的话,这里还有一种:
|pf2|-|pf1|=2a |oa|=a
原式可理解为|pf2|^2/(pf2-3a)存在最小值12a
将式子倒过来可得到1/pf2-3a/(pf2^2)
令x=1/pf2 (x=1/6a,
解得e=12a>0,
所以
PF1=PF2-2a>a
所以(PF2)min=a+c>3a,
解得e>2
所以e属于(2,5]
|PF2|^2 / [|PF1|-|OA|]
=|PF2|^2 / [|PF2|-3a]
=[|PF2|^2-9a^2+9a^2] / [|PF2|-3a]
=|PF2|+3a+{9a^2 / [|PF2|-3a]}
=|PF2|-3a+{9a^2 / [|PF2|-3a]} +6a
根据基本不等式,在|PF2|-3a>0时,有|PF2|-3a+{9a^2 / [|PF2|-3a]} >=6a,
|PF2|-3a+{9a^2 / [|PF2|-3a]} +6a>=12a.
当且仅当|PF2|-3a = {9a^2 / [|PF2|-3a]},即PF2=6a时能取到=.
当P运动到左顶点时候,PF2取到最小值(PF2)min=a+c,所以必须满足(PF2)min=a+c>3a,
且(PF2)min=a+c0,且能取到PF2=6a.
解得e属于(2,5].
如果这种方法不理解的话,这里还有一种:
|pf2|-|pf1|=2a |oa|=a
原式可理解为|pf2|^2/(pf2-3a)存在最小值12a
将式子倒过来可得到1/pf2-3a/(pf2^2)
令x=1/pf2 (x=1/6a,
解得e=12a>0,
所以
PF1=PF2-2a>a
所以(PF2)min=a+c>3a,
解得e>2
所以e属于(2,5]
看了已知f1,f2分别为双曲线的左...的网友还看了以下:
高中数学小问若点O点和点F(-2,0)分别为双曲线X平方/a平方-Y平方=1(a>0)的中心和左焦 2020-04-27 …
若点O和点F(-2,0)分别为双曲线x²/a²-y²=1(a>1)的中心和左焦点,点P为双曲线右支 2020-06-07 …
(2014•梅州一模)如图所示,椭圆C:x2+y2m=1(0<m<1)的左顶点为A,M是椭圆C上异 2020-06-12 …
(如图)过椭圆x2a2+y2b2=1(a>b>0)的左焦点F任作一条与两坐标轴都不垂直的弦AB;若 2020-06-19 …
如下图所示,椭圆的左顶点为,是椭圆上异于点的任意一点,点与点关于点对称.(1)若点的坐标为,求的值 2020-06-30 …
若|a|=—a.则有理数a在数轴上的邓应点一定在()A原点左侧B原点或原点左侧C若|a|=—a.则 2020-07-02 …
若点O和点F(-2,0)分别为双曲线x^2/a^2-y^2/b^2=1的中心和左焦点若O和点F(- 2020-07-26 …
设双曲线的左、右焦点为F1,F2,左、右顶点为M,N,若△PF1F2的顶点P在双曲线上,则△PF1 2020-08-01 …
F1和F2分别为双曲线xx/aa-yy/bb=1(a,b>0)的左右焦点P为左支上任意点,若|PF2 2020-12-31 …
已知F1,F2分别为双曲线的左、右焦点,P为双曲线左支上任一点,若的最小值为8a,则双曲线的离心率e 2020-12-31 …