早教吧作业答案频道 -->数学-->
(2007•莱芜)在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(-3,1).(1)求点B的坐标;(2)求过A,O,B三点的抛物线的解析式;(3)设抛物线的对称轴
题目详情
(2007•莱芜)在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(-3,1).
(1)求点B的坐标;
(2)求过A,O,B三点的抛物线的解析式;
(3)设抛物线的对称轴为直线l,P是直线l上的一点,且△PAB的面积等于△AOB的面积,求点P的坐标.

(1)求点B的坐标;
(2)求过A,O,B三点的抛物线的解析式;
(3)设抛物线的对称轴为直线l,P是直线l上的一点,且△PAB的面积等于△AOB的面积,求点P的坐标.

▼优质解答
答案和解析
(1)作AC⊥x轴,垂足为C,作BD⊥x轴,垂足为D,易证△ACO≌△ODB,就可以求出OD,BD的长,可以得到B点的坐标.
(2)已知A,O,B三点的坐标,利用待定系数法,就可以求出抛物线的解析式.
(3)△PAB的面积等于△AOB的面积,则P点到AB的距离等于O到AB的距离,即△AOB AB边上的高线长.则过点O作AB的平行线,与抛物线的对称轴的交点,以及这点关于F的对称点就是所求的点.
【解析】
(1)作AC⊥x轴,垂足为C,作BD⊥x轴,垂足为D.
则∠ACO=∠ODB=90°,
∴∠AOC+∠OAC=90度.
又∵∠AOB=90°,
∴∠AOC+∠BOD=90°,
∴∠OAC=∠BOD.(1分)
又∵AO=BO,
∴△ACO≌△ODB.(2分)
∴OD=AC=1,DB=OC=3.
∴点B的坐标为(1,3).(4分)
(2)因抛物线过原点,
故设所求抛物线的解析式为:y=ax2+bx.
将A(-3,1),B(1,3)两点代入得,
,
解得
;
.(6分)
故所求抛物线的解析式为:
.(8分)
(3)设直线AB的方程为y=kx+b1,那么有:
,
解得
.
故直线AB的方程为:
.
∴
.(9分)
抛物线
的对称轴l的方程是:
,
,
解得
.
∴F点坐标为
.(10分)
∵l∥y轴,△PAB的面积等于△ABO的面积,
∴P点到直线AB的距离等于O点到AB的距离.
即OG=P1H=P2M(P点有两种情况).
则过原点O与AB平行的直线的解析式是y=
x.
函数y=
x与抛物线的交点坐标是即
,
而P1关于F点的对称点
.也是满足条件的点.
(2)已知A,O,B三点的坐标,利用待定系数法,就可以求出抛物线的解析式.
(3)△PAB的面积等于△AOB的面积,则P点到AB的距离等于O到AB的距离,即△AOB AB边上的高线长.则过点O作AB的平行线,与抛物线的对称轴的交点,以及这点关于F的对称点就是所求的点.
【解析】
(1)作AC⊥x轴,垂足为C,作BD⊥x轴,垂足为D.
则∠ACO=∠ODB=90°,
∴∠AOC+∠OAC=90度.

又∵∠AOB=90°,
∴∠AOC+∠BOD=90°,
∴∠OAC=∠BOD.(1分)
又∵AO=BO,
∴△ACO≌△ODB.(2分)
∴OD=AC=1,DB=OC=3.
∴点B的坐标为(1,3).(4分)
(2)因抛物线过原点,
故设所求抛物线的解析式为:y=ax2+bx.
将A(-3,1),B(1,3)两点代入得,

解得


故所求抛物线的解析式为:

(3)设直线AB的方程为y=kx+b1,那么有:

解得

故直线AB的方程为:

∴

抛物线



解得

∴F点坐标为

∵l∥y轴,△PAB的面积等于△ABO的面积,
∴P点到直线AB的距离等于O点到AB的距离.
即OG=P1H=P2M(P点有两种情况).
则过原点O与AB平行的直线的解析式是y=

函数y=


而P1关于F点的对称点

看了(2007•莱芜)在平面直角坐...的网友还看了以下:
初三数学,急用,今天1、已知⊙O的直径为6,P为直线L上一点,OP=3那么直线L与⊙O的位置关系是 2020-04-26 …
三角函数,SOS!如图,在花园小区内有一超市O,已知:文化活动中心A在超市O北偏东30°的方向,物 2020-04-27 …
关于求逆的.设方阵A满足方程A的平方-A-2E=O(opq的o欧),证明:A及A+2E均可逆,并求 2020-04-27 …
一共3小题,1.已知sina+sinb+sinc=o,cosa+cosb+cosc=o求cos(b 2020-04-27 …
已知在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,以AB上一点O为圆心,AD为弦作圆O( 2020-05-13 …
已知cosO=-3/5,O属于(/2,),求sin(O+/3)的值已知sinO=-12/13,O是 2020-05-13 …
如图的O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上找点E,连接ED,使得∠ 2020-05-17 …
1.学如(),不进则退.2.知之为知之,(),().3.知不足者(),耻下问者.这些都是描写什么的 2020-05-21 …
已知,在△ADC中,∠ADC=90°,以CD为直径作半圆圆O已知,在△ADC中,∠ADC=90°, 2020-06-09 …
已知,Rt△ABC中,∠C=90°,AC=4,BC=3.以AC上一点O为圆心的⊙O与BC相切于点C 2020-06-15 …