早教吧作业答案频道 -->数学-->
设对任意实数x,y有[f(x)+f(y)]/2=0,f(0)=c,证明f(x)恒为c设对任意实数x,y有[f(x)+f(y)]/2=0,f(0)=c,证明f(x)恒为c
题目详情
设对任意实数x,y 有[f(x)+f(y)]/2=0,f(0)=c,证明f(x)恒为c
设对任意实数x,y 有[f(x)+f(y)]/2=0,f(0)=c,证明f(x)恒为c
设对任意实数x,y 有[f(x)+f(y)]/2=0,f(0)=c,证明f(x)恒为c
▼优质解答
答案和解析
用反证法,假设存在x0使f(x0)≠c
当0≤f(x0) 令a[n]=f(2^n·x0),在原恒等式中取x为0,y为2^n·x0,得(c+a[n])/2≤a[n-1],∴a[n]≤2a[n-1]-c
下用数学归纳法证明a[n]≤(a[0]-c)2^n+c
当n=1时显然成立
假设当n=k时成立,即a[k]≤(a[0]-c)2^k+c,那么当n=k+1时a[n]=a[k+1]≤2a[k]-c≤2((a[0]-c)2^k+c)-c=(a[0]-c)2^(k+1)+c=(a[0]-c)2^n+c,即n=k+1时也成立
注意到a[n]=f(2^n·x0)≥0,∴对任意n∈N,(a[0]-c)2^n+c=(f(x0)-c)2^n+c≥0,即2^n≤c/(c-f(x0))
但当n>log[2](c/(c-f(x0))时2^n>c/(c-f(x0)),矛盾!
当f(x0)>c时,在原不等式中令x=-x0,y=x0,得[f(-x0)+f(x0)]/2≤c,∴f(-x0)≤2c-f(x0) ∴假设不成立,即f(x)恒为c
当0≤f(x0)
下用数学归纳法证明a[n]≤(a[0]-c)2^n+c
当n=1时显然成立
假设当n=k时成立,即a[k]≤(a[0]-c)2^k+c,那么当n=k+1时a[n]=a[k+1]≤2a[k]-c≤2((a[0]-c)2^k+c)-c=(a[0]-c)2^(k+1)+c=(a[0]-c)2^n+c,即n=k+1时也成立
注意到a[n]=f(2^n·x0)≥0,∴对任意n∈N,(a[0]-c)2^n+c=(f(x0)-c)2^n+c≥0,即2^n≤c/(c-f(x0))
但当n>log[2](c/(c-f(x0))时2^n>c/(c-f(x0)),矛盾!
当f(x0)>c时,在原不等式中令x=-x0,y=x0,得[f(-x0)+f(x0)]/2≤c,∴f(-x0)≤2c-f(x0)
看了设对任意实数x,y有[f(x)...的网友还看了以下:
两个可导函数乘积是否可导?为什么?设f(x)在[a.b]上连续,且对所有那些在[a,b]上满足附加 2020-05-13 …
1.集合若A={x|x²-5x+6=0},B={x|ax-6=0},且A∪B=A,求出实数a的组成 2020-06-03 …
求函数f(x)=x³在(-∞,+∞)上是增函数设X①,X②是任意两个实数,且X①<X②,则X②-X 2020-07-31 …
函数、积分、0值设函数f(x)在0,派上连续,且∫f(x)sinxdx=0,∫f(x)cosxdx 2020-07-31 …
函数奇偶性判断可以用代入法吗?设函数f(x)对于任意x,y属于R,都有f(x+y)=f(x)+f( 2020-08-01 …
设函数f(x)在区间0,+∞)可导,f(0)=0且其反函数为g(x),若∫[0,f(x)]g(t) 2020-08-01 …
证明不动点假设函数f(x)在闭区间[0,1]上连续,并且对[0,1]上任意点x有0<f(x)<1. 2020-08-01 …
设函数f(x)对于任意xy∈R都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f( 2020-08-03 …
1已知函数f(x)对任意x,y∈R总有f(x)+(y)=f(x+y)且当x〉0时,f(x)〈0,f( 2020-12-03 …
1.设计一个计算1+1/3+1/5+...+1/99的值的算法,并画出相应的程序框图.(要用循环结构 2021-01-15 …