早教吧作业答案频道 -->数学-->
设对任意实数x,y有[f(x)+f(y)]/2=0,f(0)=c,证明f(x)恒为c设对任意实数x,y有[f(x)+f(y)]/2=0,f(0)=c,证明f(x)恒为c
题目详情
设对任意实数x,y 有[f(x)+f(y)]/2=0,f(0)=c,证明f(x)恒为c
设对任意实数x,y 有[f(x)+f(y)]/2=0,f(0)=c,证明f(x)恒为c
设对任意实数x,y 有[f(x)+f(y)]/2=0,f(0)=c,证明f(x)恒为c
▼优质解答
答案和解析
用反证法,假设存在x0使f(x0)≠c
当0≤f(x0) 令a[n]=f(2^n·x0),在原恒等式中取x为0,y为2^n·x0,得(c+a[n])/2≤a[n-1],∴a[n]≤2a[n-1]-c
下用数学归纳法证明a[n]≤(a[0]-c)2^n+c
当n=1时显然成立
假设当n=k时成立,即a[k]≤(a[0]-c)2^k+c,那么当n=k+1时a[n]=a[k+1]≤2a[k]-c≤2((a[0]-c)2^k+c)-c=(a[0]-c)2^(k+1)+c=(a[0]-c)2^n+c,即n=k+1时也成立
注意到a[n]=f(2^n·x0)≥0,∴对任意n∈N,(a[0]-c)2^n+c=(f(x0)-c)2^n+c≥0,即2^n≤c/(c-f(x0))
但当n>log[2](c/(c-f(x0))时2^n>c/(c-f(x0)),矛盾!
当f(x0)>c时,在原不等式中令x=-x0,y=x0,得[f(-x0)+f(x0)]/2≤c,∴f(-x0)≤2c-f(x0) ∴假设不成立,即f(x)恒为c
当0≤f(x0)
下用数学归纳法证明a[n]≤(a[0]-c)2^n+c
当n=1时显然成立
假设当n=k时成立,即a[k]≤(a[0]-c)2^k+c,那么当n=k+1时a[n]=a[k+1]≤2a[k]-c≤2((a[0]-c)2^k+c)-c=(a[0]-c)2^(k+1)+c=(a[0]-c)2^n+c,即n=k+1时也成立
注意到a[n]=f(2^n·x0)≥0,∴对任意n∈N,(a[0]-c)2^n+c=(f(x0)-c)2^n+c≥0,即2^n≤c/(c-f(x0))
但当n>log[2](c/(c-f(x0))时2^n>c/(c-f(x0)),矛盾!
当f(x0)>c时,在原不等式中令x=-x0,y=x0,得[f(-x0)+f(x0)]/2≤c,∴f(-x0)≤2c-f(x0)
看了设对任意实数x,y有[f(x)...的网友还看了以下:
已知定义域为R的函数f(x)满足f[f(x)-x^2+x]=f(x)-x^2+x,设有且仅有一个实 2020-05-13 …
已知函数f(x)满足:对任意实数m,n都有f(m+n)=f(m)+f(n)-1已知函数f(x)满足 2020-05-17 …
1.设f(x)是R上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5 2020-05-21 …
已知函数f(x)对任意实数x,y∈R,总有f(x)+f(y)=f(x+y)已知函数f(x)对任意实 2020-07-16 …
已知函数f(x)对任意实数x,y∈R,总有f(x)+f(y)=f(x+y)已知函数f(x)对任意实 2020-07-16 …
设函数f(x)=(2e)x,g(x)=(e3)x,其中e为自然对数的底数,则()A.对于任意实数x恒 2020-10-31 …
设函数f(x)=x+4/x-6(x>0)和g(x)=-x^2+ax+m(a,m均为实数),且对任意的 2020-11-16 …
f(x)=x²+2x+1,f(-1)=0,对任意实数xf(x)≥0,当x属于[-2,2]时,g(x) 2020-11-28 …
1、设函数f(x)为奇函数,且对任意x,y属于R都有f(x)-f(y)=f(x-y),当x0,f(1 2020-12-08 …
已知二次函数f(x)的二次项系数为负数,对于任意实数x,都有f(2-x)=f(2+x),试问在f(1 2021-01-11 …