早教吧 育儿知识 作业答案 考试题库 百科 知识分享

数列{an}中,a1=4,前n项和Sn满足:Sn=an+1+n.(Ⅰ)求an;(Ⅱ)令bn=2n−1+1nan,数列{bn2}的前n项和为Tn.求证:∀n∈N*,Tn<54.

题目详情
数列{an}中,a1=4,前n项和Sn满足:Sn=an+1+n.
(Ⅰ)求an
(Ⅱ)令bn=
2n−1+1
nan
,数列{bn2}的前n项和为Tn.求证:∀n∈N*,Tn
5
4
▼优质解答
答案和解析
(Ⅰ)数列{an}中,∵a1=4,前n项和Sn满足:Sn=an+1+n,∴当n≥2时,an=Sn-Sn-1=an+1+n-an-(n-1),∴an+1=2an-1,an+1-1=2(an-1),(n≥2),(4分)又∵a1=S1=a2+1,a1=4,解得a2=3,∴an-1=(a2-1)•2n-2=2n-...