早教吧作业答案频道 -->数学-->
an=4/n,Tn=a1^2+a2^2+a3^2+...+an^2,Sn=32-16/n,比较Tn与Sn的大小
题目详情
an=4/n,Tn=a1^2+a2^2+a3^2+...+an^2,Sn=32-16/n,比较Tn与Sn的大小
▼优质解答
答案和解析
解,
a1 = 4 a2 = 2
T1 = 16 T2 = 20
S1 = 16 S2= 24
设当n = k >=2时,Sn > Tn,则
Sn+1 - Tn+1 = 32 - 16/(n+1) - Tn - (an+1)^2
= Sn - Tn + 16/n -16/(n+1) - (an+1)^2
> 16/n -16/(n+1) - (an+1)^2
= 16/n -16/(n+1) - 16/(n+1)^2
= [16/n/(n+1) ^2] [ (n+1)^2 - n(n+1)-n]
= 16/n/(n+1) ^2 >0
因此,知 Sn > =Tn,仅当 n = 1时取等.
a1 = 4 a2 = 2
T1 = 16 T2 = 20
S1 = 16 S2= 24
设当n = k >=2时,Sn > Tn,则
Sn+1 - Tn+1 = 32 - 16/(n+1) - Tn - (an+1)^2
= Sn - Tn + 16/n -16/(n+1) - (an+1)^2
> 16/n -16/(n+1) - (an+1)^2
= 16/n -16/(n+1) - 16/(n+1)^2
= [16/n/(n+1) ^2] [ (n+1)^2 - n(n+1)-n]
= 16/n/(n+1) ^2 >0
因此,知 Sn > =Tn,仅当 n = 1时取等.
看了 an=4/n,Tn=a1^2...的网友还看了以下:
一道极限题··急求.在数列{an}中,a2=2,a6=10,且数列{√an-1}为等差数列(那1不 2020-04-27 …
已知关于X的一元二次方程x^2+2(k-1)x+k^2-1=0有两个不相等的实数根已知关于x的一元 2020-05-16 …
在等比数列{An}中,已知a1+a2+.+an=2^n-1,求a1^2+a2^2+a3^2+……a 2020-05-17 …
已知数列{an}满足a1=1,a2=2,an+2=an+an+12,n∈N*.(1)令bn=an+ 2020-06-17 …
数列{an}满足递推关系:an=An-2+2且a1=1,a2=4(1)求a3,a4(2)求an(3 2020-07-09 …
一·设a1,a2,a3,…,an,b1,b2,b3…bn均为正实数,且a1^2>a2^2+a3^2 2020-07-09 …
设ai(i=1,2...,n)是彼此不相等的正整数,求证:a1^2+a2^2/2+...+an^2 2020-07-20 …
求完全平方数前N项的和题目可以是这样的,设数列{An},A1=1^2,A2=2^2...An=n^ 2020-07-31 …
(x-2)^2=9(x+3)(步骤)用十字相乘法:x^2-5倍的根号2*x+83x^2-2x-1= 2020-08-03 …
已知数列{an}中,a1=2,an=an-1+2n-1(n>=2),求数列{an}的通项公式n>=2 2021-02-09 …