早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(设f(x)为连续函数,试证:∫0到a,x^3f(x^2)dx=1/2∫0到a^2xf(x)dx,a>0∫0到x,[∫0到tf(x)dx]dx=∫0到xf(t)(x-t)dt

题目详情
(设f(x)为连续函数,试证:∫0到a,x^3f(x^2)dx=1/2∫0到a^2 xf(x)dx,a>0
∫0到x,[∫0到tf(x)dx]dx=∫0到x f(t)(x-t)dt
▼优质解答
答案和解析
1 ∫[0,a] x^3f(x^2)dx 令x^2=t
= ∫[0,a^2] t^(3/2) f(t) d √t
=1/2 ∫[0,a^2] t f(t) d t 因d √t =1/(2√t) t换为x
=1/2 ∫[0,a^2] x f(x) d x
命题得证