早教吧作业答案频道 -->其他-->
如图,直线y=kx+c与抛物线y=ax2+bx+c的图象都经过y轴上的D点,抛物线与x轴交于A、B两点,其对称轴为直线x=1,且OA=OD.直线y=kx+c与x轴交于点C(点C在点B的右侧).则下列命题①abc>0,②3a+b>0
题目详情
如图,直线y=kx+c与抛物线y=ax2+bx+c的图象都经过y轴上的D点,抛物线与x轴交于A、B两点,其对称轴为直线x=1,且OA=OD.直线y=kx+c与x轴交于点C(点C在点B的右侧).则下列命题①abc>0,②3a+b>0,③-1<k<0,④k>a+b,⑤ac+k>0.其中正确的是______.▼优质解答
答案和解析
∵抛物线开口向上,
∴a>0.
∵抛物线对称轴是x=1,
∴b<0且b=-2a.
∵抛物线与y轴交于正半轴,
∴c>0.
∴①abc>0错误;
②3a+b>0正确;
∵直线y=kx+c经过一、二、四象限,
∴k<0.
∵OA=OD,
∴点A的坐标为(c,0).
直线y=kx+c当x=c时,y>0,
∴kc+c>0可得k>-1.
∴③-1<k<0正确;
∵直线y=kx+c与抛物线y=ax2+bx+c的图象有两个交点
∴ax2+bx+c=kx+c,
得x1=0,x2=
.
由图象知x2>1,
∴
>1
∴k>a+b
∴④k>a+b正确;
∵
,
∴
.
又∵c<1,
∴ac<1.
∵-1<k<0,
∴0<ac+k<1.
∴⑤ac+k>0错误.
故答案为②③④.
∴a>0.
∵抛物线对称轴是x=1,
∴b<0且b=-2a.
∵抛物线与y轴交于正半轴,
∴c>0.
∴①abc>0错误;
②3a+b>0正确;
∵直线y=kx+c经过一、二、四象限,
∴k<0.
∵OA=OD,
∴点A的坐标为(c,0).
直线y=kx+c当x=c时,y>0,
∴kc+c>0可得k>-1.
∴③-1<k<0正确;
∵直线y=kx+c与抛物线y=ax2+bx+c的图象有两个交点
∴ax2+bx+c=kx+c,
得x1=0,x2=
| k−b |
| a |
由图象知x2>1,
∴
| k−b |
| a |
∴k>a+b
∴④k>a+b正确;
∵
|
∴
|
又∵c<1,
∴ac<1.
∵-1<k<0,
∴0<ac+k<1.
∴⑤ac+k>0错误.
故答案为②③④.
看了如图,直线y=kx+c与抛物线...的网友还看了以下:
如图在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG//DB交C 2020-05-16 …
我看过你答的一道题目,设抛物线过定点A(-1,0),且直线x=1为准线,求抛物线顶点的轨迹C的方程 2020-06-03 …
双曲线过焦点的直线且只于双曲线右支只有一个焦点已知双曲线x^2/a^2-y^2/b^2=1(a>0 2020-07-18 …
如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B, 2020-07-24 …
如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点 2020-07-26 …
如图(1)BD,CE分别是三角形ABC的外角平分线,过A点作AF垂直于BD于点F,AG垂直于CE, 2020-07-30 …
如图,已知△ABC中,∠ABC=30°,PA⊥平面ABC,PC⊥BC,PB与平面ABC成45°角, 2020-08-01 …
抛物线过定点的问题我不明白的是抛物线过定点就是与字母系数无关,是为什么?比如y=x平方+ax+a- 2020-08-02 …
如图,在坐标系中xOy中:点A在直线y=根号3x的图像上,其横坐标为1,过A点的直线平行于x轴,交y 2021-01-10 …
已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动 2021-01-12 …