早教吧作业答案频道 -->数学-->
直线L过抛物线y^2=2px(p>0)焦点,且与抛物线相交于A(x1,y1),B(x2,y2)两点,点C在抛物线准线上,且BC平行x轴证明:直线AC经过原点
题目详情
直线L过抛物线y^2=2px(p>0)焦点,且与抛物线相交于A(x1,y1),B(x2,y2)两点,点C在抛物线准线上,且BC平行x轴
证明:直线AC经过原点
证明:直线AC经过原点
▼优质解答
答案和解析
欲证明直线AC经过原点,只需证明kOA=kOC(斜率相等)
A(x1,y1),B(x2,y2),点C在抛物线准线上,且BC平行x轴,
所以点C的坐标为(-p/2,y2)
kOA=y1/x1=y1/(y1^2 / 2p)=2p/y1
kOC=y2/(-p/2)
欲证明kOA=kOC,只需证明2p/y1=y2/(-p/2)
即只需证明y1y2=-p^2
直线L的方程为y=k(x-p/2)
与抛物线联立后得ky^2-2py-p^2k=0
y1y2=-p^2k/k=-p^2
因此可以证得直线AC经过原点.
A(x1,y1),B(x2,y2),点C在抛物线准线上,且BC平行x轴,
所以点C的坐标为(-p/2,y2)
kOA=y1/x1=y1/(y1^2 / 2p)=2p/y1
kOC=y2/(-p/2)
欲证明kOA=kOC,只需证明2p/y1=y2/(-p/2)
即只需证明y1y2=-p^2
直线L的方程为y=k(x-p/2)
与抛物线联立后得ky^2-2py-p^2k=0
y1y2=-p^2k/k=-p^2
因此可以证得直线AC经过原点.
看了直线L过抛物线y^2=2px(...的网友还看了以下:
曲线方程已知抛物线的顶点在原点,焦点在x轴上,它的准线经过双曲线(x的平方/a的平方)-(y的平方 2020-04-08 …
如图,在直角坐标系中,抛物线y=ax^2+bx+c(a不等于0)与x轴交于点A(-1,0),B(3 2020-05-16 …
如图,已知直线y=-2x+4与x轴y轴分别交于A,C两点,抛物线y=-2x²+bx+c(a≠0)经 2020-06-13 …
抛物线y=x^2-2x-3与x轴交与A,B两点,与y轴交与C点.设直线y=-x+3与y轴的交点抛物 2020-06-14 …
如图,直线y=-x+3与x轴、y轴分别交于B,C两点,抛物线y=-x05+bc+c经过点B和点C, 2020-06-27 …
如果抛物线y=ax2+bx+c,过定点M(1,1),则称此抛物线为定点抛物线.(1)请你写出一条定 2020-07-01 …
(1/2)已知抛物线C的准线为X=4分之P(P>0),顶点在原点,抛物线C与直线l:y=x1相交所 2020-07-02 …
抛物线的问题(2008,东城模拟题目)已知抛物线x^2=2py(p>0),过焦点F的动直线L交抛物线 2020-12-14 …
如图,直线y=-x+3与x轴,y轴分别交于B,C两点,抛物线y=-x²+bx+c经过点B和点C,点A 2021-01-10 …
(2011.浙江)如图,在直角坐标系中,抛物线y=ax^2+bx+c与x轴交与点A(﹣1,0)如图, 2021-01-10 …