早教吧作业答案频道 -->数学-->
(1)设x≥1,y≥1,证明x+y+1xy≤1x+1y+xy;(2)设1<a≤b≤c,证明logab+logbc+logca≤logba+logcb+logac.
题目详情
(1)设x≥1,y≥1,证明x+y+
≤
+
+xy;
(2)设1<a≤b≤c,证明logab+logbc+logca≤logba+logcb+logac.
| 1 |
| xy |
| 1 |
| x |
| 1 |
| y |
(2)设1<a≤b≤c,证明logab+logbc+logca≤logba+logcb+logac.
▼优质解答
答案和解析
证明:(1)∵x≥1,y≥1,
∴x+y+
≤
+
+xy⇔xy(x+y)+1≤x+y+x2y2.
⇔(x+y)(xy-1)+(1-x2y2)≤0,
⇔(xy-1)(x+y-1-xy)≤0,
⇔(xy-1)(x+1)(1-y)≤0.
∵x≥1,y≥1,
∴xy-1≥0,x+1>0,1-y≤0,
∴(xy-1)(x+1)(1-y)≤0成立.,
∴x+y+
≤
+
+xy.
(2)设logab=x,logbc=y,则logac=xy,logca=
,logba=
,logcb=
.
∴logab+logbc+logca≤logba+logcb+logac⇔x+y+
≤
+
+xy.
∵1<a≤b≤c,∴logab≥1,logbc≥1,即x≥1,y≥1.
由(1)可知x+y+
≤
+
+xy.
∴logab+logbc+logca≤logba+logcb+logac.
∴x+y+
| 1 |
| xy |
| 1 |
| x |
| 1 |
| y |
⇔(x+y)(xy-1)+(1-x2y2)≤0,
⇔(xy-1)(x+y-1-xy)≤0,
⇔(xy-1)(x+1)(1-y)≤0.
∵x≥1,y≥1,
∴xy-1≥0,x+1>0,1-y≤0,
∴(xy-1)(x+1)(1-y)≤0成立.,
∴x+y+
| 1 |
| xy |
| 1 |
| x |
| 1 |
| y |
(2)设logab=x,logbc=y,则logac=xy,logca=
| 1 |
| xy |
| 1 |
| x |
| 1 |
| y |
∴logab+logbc+logca≤logba+logcb+logac⇔x+y+
| 1 |
| xy |
| 1 |
| x |
| 1 |
| y |
∵1<a≤b≤c,∴logab≥1,logbc≥1,即x≥1,y≥1.
由(1)可知x+y+
| 1 |
| xy |
| 1 |
| x |
| 1 |
| y |
∴logab+logbc+logca≤logba+logcb+logac.
看了(1)设x≥1,y≥1,证明x...的网友还看了以下:
已知直线l:(2k+1)x+(k+1)y=7k+4(x属于R)和园(x-1)的平方+(y-2)的平 2020-04-26 …
求过点P(4,-1,2)并且与直线L:{X+Y-Z=7 平行的直线方程.X-Y-Z=-1}求过点P 2020-05-13 …
设函数f(x)=(1+1/n)的n次方(n∈正整数,n大于1,x∈r)1,对于任意x,证明(f(2 2020-05-14 …
已知P在直线l:x+y-1=0上,Q在圆C:(x-2)2+(y-2)2=1上.(1)过P作圆C的切 2020-06-03 …
已知点A(2.3)关于直线l:x+2y=0的对称点是A'(1)求A'的坐标(2)若点A与A'都在已 2020-07-02 …
已知曲线x^2/a^2y^2=1(a>0)与直线l:x+y=1已知曲线x^2/a^2-y^2=1( 2020-07-17 …
对于集合M,定义函数fM(x)=−1,x∈M1,x∉M.对于两个集合M,N,定义集合M△N={x| 2020-08-01 …
1+x+x(x+1)+x(x+1)^2=(1+x)[1+x+x(x+1)]=(1+x)^2(1+x 2020-08-03 …
已知函数f(x)=\left\{\begin{array}{l}{x+\frac{1}{x},x>0 2020-12-08 …
求与圆C:x^2+y^2-x+2y=0关于直线l:x-y+1=0对称的圆的方程2011-02-求与圆 2020-12-26 …