早教吧作业答案频道 -->数学-->
人教版高中数学必修一求教定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意实数x,y有f(x+y)=f(x)·f(y)(1)证明:当x<0时,有1<f(x)<1(2)证明:f(x)是R上的增函数
题目详情
人教版高中数学必修一求教
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意实数x,y有f(x+y)=f(x)·f(y)
(1)证明:当x<0时,有1<f(x)<1
(2)证明:f(x)是R上的增函数
(3)若f(x²)·f(2x-x²+2)>1,求x的取值范围
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意实数x,y有f(x+y)=f(x)·f(y)
(1)证明:当x<0时,有1<f(x)<1
(2)证明:f(x)是R上的增函数
(3)若f(x²)·f(2x-x²+2)>1,求x的取值范围
▼优质解答
答案和解析
1.
由:f(0+0)=f(0)*f(0)
即:f(0)=[f(0)]^2,
解此方程得:f(0)=1,或f(0)=0.
但已知:f(0)不=0,故有:f(0)=1.
对于x0
1=f(0)=f(x-x)=f(x)*f(-x)
即:f(x)*f(-x)=1,
由于f(-x)>1,故:
x0,f(x)>1,故上式中:
f(x2-x1)>1.
故*** 式>0
即:f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)
=f(x2-x1) *f(x1)-f(x1)
=f(x1)*[f(x2-x1)-1]>0
即:f(x2)-f(x1)>0
即f(x2)>f(x1) 当x2>x1时恒成立.
即f(x)为增函数.
3.若f(x^2)*f(2x-x^2+2)>1
即:f(x^2+2x-x^2+2)>1=f(0)因为函数是R上的增函数
即:x^2+2x-x^2+2)>0
即:2x+2>0,即:x>-1.
由:f(0+0)=f(0)*f(0)
即:f(0)=[f(0)]^2,
解此方程得:f(0)=1,或f(0)=0.
但已知:f(0)不=0,故有:f(0)=1.
对于x0
1=f(0)=f(x-x)=f(x)*f(-x)
即:f(x)*f(-x)=1,
由于f(-x)>1,故:
x0,f(x)>1,故上式中:
f(x2-x1)>1.
故*** 式>0
即:f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)
=f(x2-x1) *f(x1)-f(x1)
=f(x1)*[f(x2-x1)-1]>0
即:f(x2)-f(x1)>0
即f(x2)>f(x1) 当x2>x1时恒成立.
即f(x)为增函数.
3.若f(x^2)*f(2x-x^2+2)>1
即:f(x^2+2x-x^2+2)>1=f(0)因为函数是R上的增函数
即:x^2+2x-x^2+2)>0
即:2x+2>0,即:x>-1.
看了人教版高中数学必修一求教定义在...的网友还看了以下:
如何用几何画板绘制极坐标系(polarcoordinates)下的正函数r=f(θ)(r>0)我想 2020-05-17 …
高中必修1函数题定义在R上的函数y=f(x),f(x)≠0.当x>0时,f(x)>1.且对于任意的 2020-06-02 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
定义在(-1,1)上的函数f(x)-f(y)=f((x-y)/(1-xy)),当X∈(-1,0), 2020-06-09 …
设f(x)定义在实数集R上,当x>0时,f(x)>1且对于任意x,y∈R,有f(x+y)=f(x) 2020-06-16 …
函数r=f(p)的图象如图所示.(1)函数r=f(p)的定义域是什么?(2)函数r=f(p)的值域 2020-06-25 …
13.已知函数f(x)是奇函数,且当x>0时,f(x)=x3+2x2—1,求f(x)在R上的表达式 2020-07-01 …
函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f'(x)>2,则f(x)>2x+4的解集 2020-07-25 …
定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式exf(x)>ex+ 2020-08-01 …
示范高中函数r=f(p)的图象如图所示,该图中,若r只有唯一的p与之对应则r的范围为. 2020-12-18 …