早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知过点M(-2,0)的直线与椭圆x^2+2y^2=2交于P1,P2两点,线段P1P2的中点为P,设直线L的斜率为K1(K1不等于0),直线OP的斜率为K2,求证:K1*K2是定值.直线L就是过点M的直线,也过P1,P2

题目详情
已知过点M(-2,0)的直线与椭圆x^2+2y^2=2交于P1,P2两点,线段P1P2的中点为P,设直线L的斜率为K1(K1不等于0),直线OP的斜率为K2,求证:K1*K2是定值.
直线L就是过点M的直线,也过P1,P2
▼优质解答
答案和解析
证明:采用点差法,设P(x1,y1),P2(x2,y2)P1P2中点P(xo,yo),则有x1+x2=2xo,y1+y2=2yo,又P1,P2在曲线x^2/2+y^2=1上,则有x1^2/2+y1^2=1,x2^2/2+y2^2=1,两式相减得P1P2斜率(存在)k1=(y1-y2)/(x1-x2)=(-1/2)(x1+x2)/(y1+y2)=(-1/2)xo/yo,又OP斜率(存在)为k2=(yo-0)/(xo-0)=yo/xo,于是k1*k2=(-1/2)(xo/yo)(yo/xo)=-1/2,定值,得证.仅参考.