早教吧作业答案频道 -->数学-->
如图,在直角三角形ABC中有一个内接正方形DEFG,它的一条边DE在直角三角形的斜边BC上(1)设AB=a,∠ABC=Q,用a和Q分别表示三角形ABC的面积和正方形的面积(2)当Q变化时,求P/Q的最小值
题目详情
如图,在直角三角形ABC中有一个内接正方形DEFG,它的一条边DE在直角三角形的斜边BC上
(1)设AB=a,∠ABC=Q,用a和Q分别表示三角形ABC的面积和正方形的面积
(2)当Q变化时,求P/Q的最小值
(1)设AB=a,∠ABC=Q,用a和Q分别表示三角形ABC的面积和正方形的面积
(2)当Q变化时,求P/Q的最小值
▼优质解答
答案和解析
(1)设AB=a,∠ABC=θ,用P和Q分别表示三角形ABC的面积和正方形的面积
(2)当θ变化时,求P/Q的最小值
(1)AC/AB=tanθ,AC=atanθ,
S△ABC=a^2tanθ/2,
作AN⊥BC,交GF于M,
AN=AB*sinθ=a sinθ,
AM/AN=GF/BC,
AB/BC=cosθ,
BC=a/cosθ,
设GF=x,MN=GF=x,
(a sinθ-x)/ (a sinθ)=x/(a/cos θ),
X= a sinθ/(1+ sinθcos θ),
DE= a sinθ/(1+ sinθcos θ),
S正方形DEFG=x^2=a^2[ sinθ/(1+ sinθcos θ)]^2,
(2).P/Q=( a^2tanθ/2)/ {a^2[ sinθ/(1+ sinθcos θ)]^2}
=(1+ sinθcos θ)^2/sin2θ,
=(1+ sin2θ/2)^2/ sin2θ
=1/ sin2θ+ 1+ sin2θ/4
令sin2θ=t,1/ sin2θ+ sin2θ/4=1/t+t/4
1/t+t/4>=2√[(1/t)(t/4)]
1/t+t/4>=1,最小值为1,
1/ sin2θ+ 1+ sin2θ/4>=2,
故P/Q最小值为2.
(2)当θ变化时,求P/Q的最小值
(1)AC/AB=tanθ,AC=atanθ,
S△ABC=a^2tanθ/2,
作AN⊥BC,交GF于M,
AN=AB*sinθ=a sinθ,
AM/AN=GF/BC,
AB/BC=cosθ,
BC=a/cosθ,
设GF=x,MN=GF=x,
(a sinθ-x)/ (a sinθ)=x/(a/cos θ),
X= a sinθ/(1+ sinθcos θ),
DE= a sinθ/(1+ sinθcos θ),
S正方形DEFG=x^2=a^2[ sinθ/(1+ sinθcos θ)]^2,
(2).P/Q=( a^2tanθ/2)/ {a^2[ sinθ/(1+ sinθcos θ)]^2}
=(1+ sinθcos θ)^2/sin2θ,
=(1+ sin2θ/2)^2/ sin2θ
=1/ sin2θ+ 1+ sin2θ/4
令sin2θ=t,1/ sin2θ+ sin2θ/4=1/t+t/4
1/t+t/4>=2√[(1/t)(t/4)]
1/t+t/4>=1,最小值为1,
1/ sin2θ+ 1+ sin2θ/4>=2,
故P/Q最小值为2.
看了 如图,在直角三角形ABC中有...的网友还看了以下:
x^2-y^2=a^2右准线交实轴于P,过P直线交双曲线A、B,过右焦点F引直线垂直AB交双曲线于 2020-04-08 …
如图1,点P是直线l:y=-2x-2上的点,过点P的另一条直线m交抛物线y=x2于A、B两点.(1 2020-05-17 …
p(a一杠b一杠c一杠)的概率求它的表达式~ 2020-06-13 …
在平面直角坐标系中,点P(a,b)到直线x=2的距离为3,则a的值若x轴的点p到y轴的距离为3,则 2020-06-14 …
P是△ABC一边上的一点(P不与A、B、C重合),过点P的一条直线截△ABC,如果截得的三角形与△ 2020-07-07 …
设事件A和B满足p(B)=0.7,p(A'B)=0.3,则p(A'UB')=多少.在有'就是表示上 2020-07-08 …
在直角坐标系XOY内,点P在直线Y=二分之一X上(点P在第一象限)过点P作PA垂直X轴,垂足为A, 2020-07-26 …
点P与∠A的位置关系如图所示.(1)在图1,图2,图3中,以P为顶点作出∠P(0°<∠P<180°) 2020-11-11 …
如图所示,在直角梯形ABCD中,AB‖CD,∩A=90°,AB=2,DC=3,AD=7,P为AD上一 2020-12-25 …
已知异面直线a与b所成的角是60度,P为空间一点,则过P与a和b所成角为45度的直线有几条?但我觉得 2021-01-11 …