早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在三角形ABC中,三边长分别为a,b,c,且a=m2(2指平方)-n2,b=2mn,c=m2+n2,三角形ABC是直角三角形吗?(没打错任何一个字!认真细心看题!)似乎有三种情况,当角A,B,C分别为直角时来判断,最后证明是直角

题目详情
在三角形ABC中,三边长分别为a,b,c,且a=m2(2指平方)-n2,b=2mn,c=m2+n2,三角形ABC是直角三角形吗?(没打错任何一个字!认真细心看题!)似乎有三种情况,当角A,B,C分别为直角时来判断,最后证明是直角三角形.
▼优质解答
答案和解析
似乎不用分3种情况吧!
证明如下:
因为:a,b,c可构成三角形
所以:a,b,c不等于0
即m不等于0,n不等于0,且m不等于n,
因为:c-a=(m2+n2)-(m2-n2)=2n2>0
所以:c>a
因为:c-b=m2-2mn+n2=(m-n)2>0
所以:c>b
即:c为三角形最长边
因为:a2+b2=(m2-n2)2+(2mn)2=(m2+n2)2=c2,满足勾股定理
所以:三角形ABC是直角三角形
看了 在三角形ABC中,三边长分别...的网友还看了以下: