早教吧作业答案频道 -->其他-->
如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F(1)若CE=12,CF=5,求OC的长;(2)当点O在边AC上运动到何处且△ABC满足什么条件
题目详情

(1)若CE=12,CF=5,求OC的长;
(2)当点O在边AC上运动到何处且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.
▼优质解答
答案和解析
(1)∵OF是∠BCA的外角平分线,
∴∠OCF=∠FCD,
又∵MN∥BC,
∴∠OFC=∠ECD,
∴∠OFC=∠COF,
∴OF=OC,
∴OE=OF;
∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F
∴∠ECF=90°,
∵CE=12,CF=5,
∴EF=
EF=6.5;
(2)点O是AC的中点且∠ACB=90°,
理由:∵O为AC中点,
∴OA=OC,
∵由(1)知OE=OF,
∴四边形AECF为平行四边形;
∵∠1=∠2,∠4=∠5,∠1+∠2+∠4+∠5=180°,
∴∠2+∠5=90°,即∠ECF=90°,
∴▱AECF为矩形,
又∵AC⊥EF.
∴▱AECF是正方形.
∴当点O为AC中点且△ABC是以∠ACB为直角三角形时,四边形AECF是正方形.
∴∠OCF=∠FCD,
又∵MN∥BC,
∴∠OFC=∠ECD,
∴∠OFC=∠COF,
∴OF=OC,
∴OE=OF;
∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F
∴∠ECF=90°,
∵CE=12,CF=5,
∴EF=

(2)点O是AC的中点且∠ACB=90°,
理由:∵O为AC中点,
∴OA=OC,
∵由(1)知OE=OF,
∴四边形AECF为平行四边形;
∵∠1=∠2,∠4=∠5,∠1+∠2+∠4+∠5=180°,
∴∠2+∠5=90°,即∠ECF=90°,
∴▱AECF为矩形,
又∵AC⊥EF.
∴▱AECF是正方形.
∴当点O为AC中点且△ABC是以∠ACB为直角三角形时,四边形AECF是正方形.
看了 如图,△ABC中,点O是边A...的网友还看了以下:
如图,已知等腰三角形ABC的底边长8cm,腰长5cm.一动点P在底边上从B向C以0.25/s的速度 2020-04-27 …
已知:如图,点A在y轴上,⊙A与x轴交于B、C两点,与y轴交于点D(0,3)和点E(0,-1)(1 2020-05-13 …
将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E交BC于F,边AB折叠后与BC边 2020-05-17 …
如图,已知点B的坐标为(6,9),点A的坐标为(6,6),点P为⊙A上一动点,PB的延长线交⊙A于 2020-06-23 …
如图,在△ABC中,AB=AC,D是边BC的中点,一个圆过点A,交边AB于点E,且与BC相切于点D 2020-07-21 …
如图,已知矩形ABCD,以A为圆心,AD为半径的圆交AC、AB于M、E,CE的延长线交⊙A于F,C 2020-07-26 …
(2013•青铜峡市模拟)如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A 2020-07-30 …
正方形ABCD边长为a,点E是AB中点,F是AD上一动点,EF的中垂线交边AD与H,交边BC于点N 2020-08-01 …
下列说法错误的是()A.平行四边形的对角顶点关于对角线交点对称B.平行四边形的对边关于对角线交点对 2020-08-02 …
在下列四个命题中,假命题为()A.如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直 2020-08-02 …