早教吧作业答案频道 -->其他-->
如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F(1)若CE=12,CF=5,求OC的长;(2)当点O在边AC上运动到何处且△ABC满足什么条件
题目详情

(1)若CE=12,CF=5,求OC的长;
(2)当点O在边AC上运动到何处且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.
▼优质解答
答案和解析
(1)∵OF是∠BCA的外角平分线,
∴∠OCF=∠FCD,
又∵MN∥BC,
∴∠OFC=∠ECD,
∴∠OFC=∠COF,
∴OF=OC,
∴OE=OF;
∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F
∴∠ECF=90°,
∵CE=12,CF=5,
∴EF=
EF=6.5;
(2)点O是AC的中点且∠ACB=90°,
理由:∵O为AC中点,
∴OA=OC,
∵由(1)知OE=OF,
∴四边形AECF为平行四边形;
∵∠1=∠2,∠4=∠5,∠1+∠2+∠4+∠5=180°,
∴∠2+∠5=90°,即∠ECF=90°,
∴▱AECF为矩形,
又∵AC⊥EF.
∴▱AECF是正方形.
∴当点O为AC中点且△ABC是以∠ACB为直角三角形时,四边形AECF是正方形.
∴∠OCF=∠FCD,
又∵MN∥BC,
∴∠OFC=∠ECD,
∴∠OFC=∠COF,
∴OF=OC,
∴OE=OF;
∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F
∴∠ECF=90°,
∵CE=12,CF=5,
∴EF=

(2)点O是AC的中点且∠ACB=90°,
理由:∵O为AC中点,
∴OA=OC,
∵由(1)知OE=OF,
∴四边形AECF为平行四边形;
∵∠1=∠2,∠4=∠5,∠1+∠2+∠4+∠5=180°,
∴∠2+∠5=90°,即∠ECF=90°,
∴▱AECF为矩形,
又∵AC⊥EF.
∴▱AECF是正方形.
∴当点O为AC中点且△ABC是以∠ACB为直角三角形时,四边形AECF是正方形.
看了 如图,△ABC中,点O是边A...的网友还看了以下:
下图中AB、CD为两条纬线,B、C、E位于同一经线上,A、E、D为晨昏线上的三点,此时太阳高度为0 2020-04-27 …
若点P(a,b)在函数y=-x2+3lnx的图象上,点Q(c,d)在函数y=x+2的图象上,则(a 2020-04-27 …
如图平面直角坐标系XOY中,直线Y= 分别交X轴 Y轴于A C点建议自己画图:在平面直角坐 2020-05-15 …
1.经过下列两点的直线的斜率是否存在?如果存在求出其斜率第一题A(负根号3,根号2),B(根号2, 2020-05-20 …
如图为一突触的结构,在a、d两点连接一个灵敏电流计.已知ab=bd,若分别刺激b、c两点,灵敏电流 2020-07-07 …
(2072•湖州)如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A) 2020-07-30 …
抛物线y=-(√3/3)x^2-(2√3/3)x+√3的图像与x轴交于A,B两点,与y轴交于c点, 2020-07-31 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>c>0)的左右焦点分别为F1.F2,过椭圆上一 2020-07-31 …
在介质中S1.S2为两个频率相同,振动步调相同,振动方向相同的波源,它们相距两个波长,且S1A=AB 2020-12-27 …
如图为一突触的结构,在a、d两点连接一个灵敏电流计.已知ab=bd,若分别刺激b、c两点,灵敏电流计 2020-12-30 …