早教吧作业答案频道 -->数学-->
(2003•温州)如图1,点A在⊙O外,射线AO交⊙O于F,C两点,点H在⊙O上,=2,D是上的一个动点(不运动至F,H),BD是⊙O的直径,连接AB,交⊙O于点C,CD交0F于点E.且AO=BD=2.(1)设AC=x,AB=y
题目详情
(2003•温州)如图1,点A在⊙O外,射线AO交⊙O于F,C两点,点H在⊙O上,
=2
,D是
上的一个动点(不运动至F,H),BD是⊙O的直径,连接AB,交⊙O于点C,CD交0F于点E.且AO=BD=2.
(1)设AC=x,AB=y,求y关于x的函数解析式,并写出自变量x的取值范围;
(2)当AD与⊙O相切时(如图2),求tanB的值;
(3)当DE=DO时(如图3),求EF的长.

=2
,D是
上的一个动点(不运动至F,H),BD是⊙O的直径,连接AB,交⊙O于点C,CD交0F于点E.且AO=BD=2.(1)设AC=x,AB=y,求y关于x的函数解析式,并写出自变量x的取值范围;
(2)当AD与⊙O相切时(如图2),求tanB的值;
(3)当DE=DO时(如图3),求EF的长.

▼优质解答
答案和解析
(1)有了AO,BD的长,就能求出AF、AG的长,然后根据切割线定理即可得出x、y的函数关系式;
(2)AD与圆O相切,那么三角形ADB是直角三角形,因此∠B的正切值就应该是AD:BD,有BD的值,求AD就是解题的关键,有两种求法:①根据AD是切线可根据AD2=AF•AG,求出AD的长,②根据AO、OD的长用勾股定理求出AD的长;
(3)可通过构建相似三角形来求解,过点D作DM⊥EO于M,那么根据DO=DE,我们不难得出EM=OM,我们可通过三角形AEC和DEM相似,得出DE•CE=AE•EM,又根据相交弦定理可得出DE•CE=FE•EG,将相等的线段进行置换,可得出AE•EM=FE•EG,可用EF表示出EG,EO,也就表示出了EM、OM,由此可在这个比例关系式中得出EF的值.
【解析】
(1)∵BD=2
∴OF=OG=1
又∵AO=2
∴AF=AO-OF=2-1=1,AG=AO+OG=2+1=3
由切割线定理的推论得AC•AB=AF•AG,
∴xy=1×3
∴y=
,自变量x的取值范围是1<x<
;
(2)∵AD与⊙O相切,
∴∠ADB=90°
又∵AO=BD=2
∴OD=1
∴AD=
∴tanB=
;
(3)过点D作DM⊥EO于M,
∵BD是直径
∴∠BCD=90°
∴∠ECA=∠EMD=90°
又∵∠AEC=∠DEM
∴Rt△AEC∽Rt△DEM
∴
∴AE•ME=DE•CE
由相交弦定理,得EF•EG=DE•CE
∴AE•ME=EF•EG
设EF=t,则AE=AO-OF+EF=2-1+t=1+t
EG=FG-EF=2-t
又∵DE=DO
∴ME=OM
∴ME=
EO=
(OF-EF)=
∴(1+t)•
=t•(2-t)
化简,得t2-4t+1=0
∴t1=2-
,t2=2+
(不合题意,舍去)
即EF=2-
.
(2)AD与圆O相切,那么三角形ADB是直角三角形,因此∠B的正切值就应该是AD:BD,有BD的值,求AD就是解题的关键,有两种求法:①根据AD是切线可根据AD2=AF•AG,求出AD的长,②根据AO、OD的长用勾股定理求出AD的长;
(3)可通过构建相似三角形来求解,过点D作DM⊥EO于M,那么根据DO=DE,我们不难得出EM=OM,我们可通过三角形AEC和DEM相似,得出DE•CE=AE•EM,又根据相交弦定理可得出DE•CE=FE•EG,将相等的线段进行置换,可得出AE•EM=FE•EG,可用EF表示出EG,EO,也就表示出了EM、OM,由此可在这个比例关系式中得出EF的值.
【解析】(1)∵BD=2
∴OF=OG=1
又∵AO=2
∴AF=AO-OF=2-1=1,AG=AO+OG=2+1=3
由切割线定理的推论得AC•AB=AF•AG,
∴xy=1×3
∴y=
,自变量x的取值范围是1<x<
;(2)∵AD与⊙O相切,
∴∠ADB=90°
又∵AO=BD=2
∴OD=1
∴AD=

∴tanB=
;(3)过点D作DM⊥EO于M,
∵BD是直径
∴∠BCD=90°
∴∠ECA=∠EMD=90°
又∵∠AEC=∠DEM
∴Rt△AEC∽Rt△DEM
∴

∴AE•ME=DE•CE
由相交弦定理,得EF•EG=DE•CE
∴AE•ME=EF•EG
设EF=t,则AE=AO-OF+EF=2-1+t=1+t
EG=FG-EF=2-t
又∵DE=DO
∴ME=OM
∴ME=
EO=
(OF-EF)=
∴(1+t)•
=t•(2-t)化简,得t2-4t+1=0
∴t1=2-
,t2=2+
(不合题意,舍去)即EF=2-
.
看了 (2003•温州)如图1,点...的网友还看了以下:
抛物线为二次函数y=x2-2x-3的图像,它与x轴相交于A、B两点(点A在点B的左侧),与y轴相交 2020-05-16 …
如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在如图,抛物 2020-06-03 …
如图1,有A、B两动点在线段MN上各自做不间断往返匀速运动(即只要动点与线段MN的某一端点重合则立 2020-07-06 …
抛物线y=x2-2x-15,y=4x-23,交于A、B点(A在B的左侧),动点P从A点出发,先到达 2020-07-26 …
已知点集A={(x,y)|(x-3)^2+(y-4)^2≤(5/2)^2}B={(x,y)|(x- 2020-07-30 …
如图1,有A、B两动点在线段MN上各自做不间断往返匀速运动(即只要动点与线段MN的某一端点重合则立 2020-07-30 …
如图,点C是以AB为直径的半圆型铁片上的靠近B点的一个定点,将该铁片按图中的位置斜靠在坐标轴上,现 2020-07-30 …
如图,在△ABC中,AC=BC=2,∠A=∠B=30°,点D在线段AB上运动(D不与A、B重合),连 2020-12-03 …
以A点后视点,以B点为架站点,测量C,D点.得出坐标,再以D点为架站点,A点为后视点,测量B,C点, 2021-01-02 …
已知抛物线y=x2+3(m+1)x+m+4与x轴交与a.b两点,与y轴交与点c,若a点在X轴负半轴上 2021-01-11 …