早教吧作业答案频道 -->其他-->
如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AE
题目详情
如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;
(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;
(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF会是正方形.
▼优质解答
答案和解析
(1)证明:∵CE平分∠ACB,∴∠1=∠2,
又∵MN∥BC,
∴∠1=∠3,∴∠3=∠2,
∴EO=CO,同理,FO=CO,
∴EO=FO.
(2)当点O运动到AC的中点时,四边形AECF是矩形.
理由:∵EO=FO,点O是AC的中点.∴四边形AECF是平行四边形,
∵CF平分∠BCA的外角,∴∠4=∠5,
又∵∠1=∠2,∴∠2+∠4=
×180°=90°.
即∠ECF=90度,∴平行四边形AECF是矩形.
(3)当△ABC是直角三角形时,即∠ACB=90°时,四边形AECF会是正方形,
理由:由(2)证明可知,当点O运动到AC的中点时,四边形AECF是矩形,
∵∠ACB=90°,CE、CN分别是∠ACB与∠ACB的外角平分线,
∴∠1=∠2=∠3=∠4=∠5=45°,
∴AC⊥MN,
∴四边形AECF是正方形.
(1)证明:∵CE平分∠ACB,∴∠1=∠2,又∵MN∥BC,
∴∠1=∠3,∴∠3=∠2,
∴EO=CO,同理,FO=CO,
∴EO=FO.
(2)当点O运动到AC的中点时,四边形AECF是矩形.
理由:∵EO=FO,点O是AC的中点.∴四边形AECF是平行四边形,
∵CF平分∠BCA的外角,∴∠4=∠5,
又∵∠1=∠2,∴∠2+∠4=
| 1 |
| 2 |
即∠ECF=90度,∴平行四边形AECF是矩形.
(3)当△ABC是直角三角形时,即∠ACB=90°时,四边形AECF会是正方形,
理由:由(2)证明可知,当点O运动到AC的中点时,四边形AECF是矩形,
∵∠ACB=90°,CE、CN分别是∠ACB与∠ACB的外角平分线,
∴∠1=∠2=∠3=∠4=∠5=45°,
∴AC⊥MN,
∴四边形AECF是正方形.
看了 如图,△ABC中,点O是AC...的网友还看了以下:
不可思议的事情有一种情况挺神奇的,当你处在某个环境下,你突然发现场景中的人物,地点,话语,正在发生 2020-04-07 …
如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,(1)求证:B 2020-05-15 …
如图所示,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B’处,点A落在A’处.(1)试说明 2020-05-15 …
如图,长方形纸片abcd,点e.f分别在边ab.cd上,连接ef.将角bef对折,点b落在直线ef 2020-05-16 …
一道数学题,晚上来看7.(2008年江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上 2020-05-16 …
如图,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处.从A、B到直线l(库底与水坝的交线)的距 2020-05-17 …
督察人员在现场督察中发现公安机关人民警察违法违纪的,可以采取的当场处置措施包括( )A.对违反警 2020-05-19 …
8237A是DMA控制器,CPU和8237A与系统总线的接口都是三态的,当CPU处于工作时,DMAC 2020-05-23 …
我军在M处发现敌舰在M处的北偏东30度30海里的点A处,我军巡逻舰在M的北偏西50度20海里的点B 2020-06-04 …
如图,从电线杆上离地面6m的点A处向地面上离电线杆底端8m的点B处拉一条固定钢缆,这条钢缆的长度为 2020-06-06 …