早教吧作业答案频道 -->数学-->
如图在Rt△ACB中,C为直角顶点,∠ABC=25°,O为斜边中点.将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为.
题目详情
如图在Rt△ACB中,C为直角顶点,∠ABC=25°,O为斜边中点.将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为___.


▼优质解答
答案和解析
∵△BCP恰为轴对称图形,
∴△BCP是等腰三角形,
如图1,连接AP,
∵O为斜边中点,OP=OA,
∴BO=OP=OA,
∴∠APB=90°,
当BC=BP时,
∴∠BCP=∠BPC,
∴∠BCP+∠ACP=∠BPC+∠APC=90°,
∴∠ACP=∠APC,
∴AC=AP,
∴AB垂直平分PC,
∴∠ABP=∠ABC=25°,
∴θ=2×25°=50°,
当BC=PC时,如图2,连接CO并延长交PB于H,
∵BC=CP,BO=PO,
∴CH垂直平分PB,
∴∠CHB=90°,
∵OB=OC,
∴∠BCH=∠ABC=25°,
∴∠CBH=65°,
∴∠OBH=40°,
∴θ=2×40°=80°,
当PB=PC时,如图3,
连接PO并延长交BC于G,连接OC,
∵∠ACB=90°,O为斜边中点,
∴OB=OC,
∴PG垂直平分BC,
∴∠BGO=90°,
∵∠ABC=25°,
∴θ=∠BOG=65°,
综上所述:当△BCP恰为轴对称图形时,θ的值为50°或65°或80°,
故答案为:50°或65°或80°.

∴△BCP是等腰三角形,
如图1,连接AP,
∵O为斜边中点,OP=OA,
∴BO=OP=OA,
∴∠APB=90°,
当BC=BP时,
∴∠BCP=∠BPC,
∴∠BCP+∠ACP=∠BPC+∠APC=90°,

∴∠ACP=∠APC,
∴AC=AP,
∴AB垂直平分PC,
∴∠ABP=∠ABC=25°,
∴θ=2×25°=50°,
当BC=PC时,如图2,连接CO并延长交PB于H,
∵BC=CP,BO=PO,
∴CH垂直平分PB,
∴∠CHB=90°,
∵OB=OC,

∴∠BCH=∠ABC=25°,
∴∠CBH=65°,
∴∠OBH=40°,
∴θ=2×40°=80°,
当PB=PC时,如图3,
连接PO并延长交BC于G,连接OC,
∵∠ACB=90°,O为斜边中点,
∴OB=OC,
∴PG垂直平分BC,
∴∠BGO=90°,
∵∠ABC=25°,
∴θ=∠BOG=65°,
综上所述:当△BCP恰为轴对称图形时,θ的值为50°或65°或80°,
故答案为:50°或65°或80°.
看了 如图在Rt△ACB中,C为直...的网友还看了以下:
已知某有机物A的化学式为C4H8O2(化学式是悲剧,将就的看),它在NaOH水溶液中加热一段时间后 2020-05-02 …
读下列经纬网图(如图),回答3-4题根据经纬网定向法,关于a、b两点方向判断的说法正确的是()A. 2020-05-13 …
已知角MPN,AD在 PM上,C,B在PN上,A,B交CD于F.若PF平分角MPN,求证:1/PA 2020-05-13 …
一道有关圆的数学证明题如图,P为圆外1点,A是切点,PCB是圆的割线,C,B在圆上,证:PA^2= 2020-05-16 …
化学推断题一问有机物A中含有三个碳原子,A水解后得到B和C,B在催化剂存在下可氧化成D,D还能气化 2020-05-21 …
如图所示,从地面上同一位置抛出两小球A、B,分别落在地面上的M、N点,两球运动的最大高度相同.空气 2020-05-21 …
A物质在通电情况下生成B和C,B在C中燃烧成AABC什么 2020-07-10 …
一道很难的圆锥曲线题如图,已知椭圆E:x^2/100+y^2/25=1的上顶点为A,直线y=-4交 2020-07-17 …
若a,b是异面直线,且a∥平面α,则b和α的位置关系是()A.平行B.相交C.b在α内D.平行、相 2020-08-02 …
在三角形ABC和三角形A'B'C'中CD,C'D'分别是高,并且AC=A'C;,CD=C'D',∠A 2020-11-28 …