早教吧作业答案频道 -->其他-->
已知△ABC是锐角三角形.(1)求证:2sinA>cosB+cosC;(2)若点M在边AC上,作△ABM和△CBM的外接圆,则当M在什么位置时,两外接圆的公共部分面积最小?
题目详情
已知△ABC是锐角三角形.
(1)求证:2sinA>cosB+cosC;
(2)若点M在边AC上,作△ABM和△CBM的外接圆,则当M在什么位置时,两外接圆的公共部分面积最小?
(1)求证:2sinA>cosB+cosC;
(2)若点M在边AC上,作△ABM和△CBM的外接圆,则当M在什么位置时,两外接圆的公共部分面积最小?
▼优质解答
答案和解析
(1)证明:如图,作AD⊥BC.
因为△ABC是锐角三角形,
所以∠BAC、∠B、∠C为锐角,
又因为∠BAD+∠CAD=∠BAC,
所以∠BAC>∠BAD,∠BAC>∠DAC,
所以sin∠BAC>sin∠BAD①,
sin∠BAC>sin∠CAD②,
①+②得,2sin∠BAC>sin∠BAD+sin∠CAD
又因为sin∠BAD=cos∠B,sin∠CAD=cos∠C,
所以2sin∠BAC>cos∠B+cos∠C.
(2)如图,当BM⊥AC时,BM最短.
则弓形BmM和弓形BnM所对弦BM最短,
则两弓形面积最小,两外接圆的公共部分面积最小.

因为△ABC是锐角三角形,
所以∠BAC、∠B、∠C为锐角,
又因为∠BAD+∠CAD=∠BAC,
所以∠BAC>∠BAD,∠BAC>∠DAC,
所以sin∠BAC>sin∠BAD①,
sin∠BAC>sin∠CAD②,
①+②得,2sin∠BAC>sin∠BAD+sin∠CAD

又因为sin∠BAD=cos∠B,sin∠CAD=cos∠C,
所以2sin∠BAC>cos∠B+cos∠C.
(2)如图,当BM⊥AC时,BM最短.
则弓形BmM和弓形BnM所对弦BM最短,
则两弓形面积最小,两外接圆的公共部分面积最小.
看了 已知△ABC是锐角三角形.(...的网友还看了以下:
在三角形ABC中,角A,B,C的对边分别为a,b,c,满足(c-2a)cosB bcosC=0在三 2020-04-05 …
已知三角形ABC中,a,b,c,分别是角abc所对的边,且满足cosA(根号3sinA-cosA) 2020-05-15 …
一道高中数学题(比较大小)已知a>b>c,试比较a^2(b-c)+b^2(c-a)+c^2(a-b 2020-06-02 …
已知a+b+c=0,试求a^2/(2a^2+bc)+b^2/(2b^2+ac)+c^2/(2c^2 2020-06-11 …
方程ax^2+bx+c=0(a不等于0),则(a-b)^2+(b-a)^2+(c-a)^2=ma^ 2020-06-27 …
设a,b,c为某三角形三边长,求证a^2(b+c-a)+b^2(c+a-b)+c^2(a+b-c) 2020-07-19 …
整式综合1.求[8+2(k-1)][60-3(k-1)]的最小值.2.已知1/(a-b)+1/(b- 2020-10-31 …
1、已知向量a,b满足:|a|=1,|b|=2,|a-b|=2,则|a+b|等于?2、已知a=(2, 2020-11-02 …
1+a四方小于等于2乘以b-c括号平方,1+b四方小于等于2乘以c-a括号平方,1+c四方小于等于2 2020-11-07 …
如果实数a,b,c满足a2+b2+c2=9,那么代数式(a-b)2+(b-c)2+(c-a)2的最大 2020-11-18 …