早教吧作业答案频道 -->其他-->
已知△ABC是锐角三角形.(1)求证:2sinA>cosB+cosC;(2)若点M在边AC上,作△ABM和△CBM的外接圆,则当M在什么位置时,两外接圆的公共部分面积最小?
题目详情
已知△ABC是锐角三角形.
(1)求证:2sinA>cosB+cosC;
(2)若点M在边AC上,作△ABM和△CBM的外接圆,则当M在什么位置时,两外接圆的公共部分面积最小?
(1)求证:2sinA>cosB+cosC;
(2)若点M在边AC上,作△ABM和△CBM的外接圆,则当M在什么位置时,两外接圆的公共部分面积最小?
▼优质解答
答案和解析
(1)证明:如图,作AD⊥BC.
因为△ABC是锐角三角形,
所以∠BAC、∠B、∠C为锐角,
又因为∠BAD+∠CAD=∠BAC,
所以∠BAC>∠BAD,∠BAC>∠DAC,
所以sin∠BAC>sin∠BAD①,
sin∠BAC>sin∠CAD②,
①+②得,2sin∠BAC>sin∠BAD+sin∠CAD
又因为sin∠BAD=cos∠B,sin∠CAD=cos∠C,
所以2sin∠BAC>cos∠B+cos∠C.
(2)如图,当BM⊥AC时,BM最短.
则弓形BmM和弓形BnM所对弦BM最短,
则两弓形面积最小,两外接圆的公共部分面积最小.

因为△ABC是锐角三角形,
所以∠BAC、∠B、∠C为锐角,
又因为∠BAD+∠CAD=∠BAC,
所以∠BAC>∠BAD,∠BAC>∠DAC,
所以sin∠BAC>sin∠BAD①,
sin∠BAC>sin∠CAD②,
①+②得,2sin∠BAC>sin∠BAD+sin∠CAD

又因为sin∠BAD=cos∠B,sin∠CAD=cos∠C,
所以2sin∠BAC>cos∠B+cos∠C.
(2)如图,当BM⊥AC时,BM最短.
则弓形BmM和弓形BnM所对弦BM最短,
则两弓形面积最小,两外接圆的公共部分面积最小.
看了 已知△ABC是锐角三角形.(...的网友还看了以下:
设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)设n≥2,b=1,c=-1,证明:fn(x) 2020-03-30 …
设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)(1)设n≥2,b=1,c=-1,证明:设函 2020-03-30 …
M=a(b+c-a)^2+b(c+a-b)^2+c(a+b-c)^2;N=(b+c-a)(c+a- 2020-06-12 …
关于求映射个数的原理集合M的元素个数m,集合N的元素个数n,那么从M到N的映射个数是n的m次幂.这 2020-06-14 …
1.已知A={(x,y)|y/1-x平方=1},B={(x,y)|y=1-x平方},C={(x,y 2020-08-01 …
设A,B,C为非空集合,M=A∩C,N=B∩C,P=M∪N,则必有()A.C∩P=CB.C∩P=P 2020-08-01 …
公式难题,abcdefgn分别为不等的数值.a+b+n=?a+c+n=?a+d+n=?……………… 2020-08-04 …
A{n│n=2k+1,k∈Z}、B{m│m=2l-1,l∈Z}如果n∈A,那么存在k∈Z,使n=2k 2020-10-31 …
用轻弹簧悬挂一圆柱体,将它放在空心的螺线管内,如图所示,当开关闭合后,发现弹簧长度缩短,则可以判断( 2020-11-01 …
公式难题...abcdefgn分别为不等的数值.a+b+n=?a+c+n=?a+d+n=?…………… 2020-11-28 …