早教吧作业答案频道 -->数学-->
M=a(b+c-a)^2+b(c+a-b)^2+c(a+b-c)^2;N=(b+c-a)(c+a-b)(a+b-c).M+N=?4abc
题目详情
M=a(b+c-a)^2+b(c+a-b)^2+c(a+b-c)^2;N=(b+c-a)(c+a-b)(a+b-c).M+N=?
4abc
4abc
▼优质解答
答案和解析
M+N=a(b+c-a)^2+b(c+a-b)^2+c(a+b-c)^2+[c-(a-b)][c+(a-b)](a+b-c)=a(b+c-a)^2+b(c+a-b)^2+c(a+b-c)^2+[c^2-(a-b)^2](a+b-c)
=a(b+c-a)^2+b(c+a-b)^2+(a+b-c)[c(a+b-c)+c^2-(a-b)^2]
=a(b+c-a)^2+b(c+a-b)^2+(a+b-c)[ac+bc+2ab-a^2-b^2]
=a(b+c-a)^2+b(c+a-b)^2+(a+b-c)[a(b+c-a)+b(c+a-b)]
=a(b+c-a)[(b+c-a)+(a+b-c)]+b(c+a-b)[(c+a-b)+(a+b-c)]
=a(b+c-a)2b+b(c+a-b)2a
=2ab[(b+c-a)+(c+a-b)]
=2ab2c
=4abc
令a=0,得:M+N=0,知M+N含因式a,同理M+N含因式b、c,又因为M+N的最高次数为三,故M+N可表示成kabc的形式,其中k为待定系数,令a=b=c=1,代人M+N=kabc解得k=4,可知M+N=4abc.
=a(b+c-a)^2+b(c+a-b)^2+(a+b-c)[c(a+b-c)+c^2-(a-b)^2]
=a(b+c-a)^2+b(c+a-b)^2+(a+b-c)[ac+bc+2ab-a^2-b^2]
=a(b+c-a)^2+b(c+a-b)^2+(a+b-c)[a(b+c-a)+b(c+a-b)]
=a(b+c-a)[(b+c-a)+(a+b-c)]+b(c+a-b)[(c+a-b)+(a+b-c)]
=a(b+c-a)2b+b(c+a-b)2a
=2ab[(b+c-a)+(c+a-b)]
=2ab2c
=4abc
令a=0,得:M+N=0,知M+N含因式a,同理M+N含因式b、c,又因为M+N的最高次数为三,故M+N可表示成kabc的形式,其中k为待定系数,令a=b=c=1,代人M+N=kabc解得k=4,可知M+N=4abc.
看了 M=a(b+c-a)^2+b...的网友还看了以下:
满足{a}⊆M⊆{a,b,c,d}的集合M的个数是( ) 是{a} {a,b} {a,c} {a, 2020-04-05 …
一道史上最难得函数题!已知实数a,b,c满足条件a/(m+2)+b/(m+1)+c/m=0,其中m 2020-05-13 …
①(m-n)^2(n-m)^2(n-m)^3②-(3x^2·y^2)^3-(-3x)^2·(-y) 2020-05-20 …
设a>b>c且1/a-b+1/b-c≥m/a-c恒成立,则M的范围1除以a-b的商+1除以b-c的 2020-06-27 …
很难得数学题设A交集B=∅,m={P|P⊆A},N={Q|Q⊆B},则()A.M∩N=∅B.M∩N 2020-07-30 …
1.已知A={(x,y)|y/1-x平方=1},B={(x,y)|y=1-x平方},C={(x,y 2020-08-01 …
一道高中不等式题已知实数a、b、c满足条件:a/(m+2)+b/(m+1)+c/m=0,其中m是正 2020-08-03 …
数学题谁做的出来我叫他大佬Rt△ABC中,∠A=32°,△ABC绕着B旋转到△A'B'C',此时C点 2020-11-01 …
有理数a、b、c在数轴上的位置如图所示:(1)比较a、|b|、c的大小(用“<”连接);(2)若m= 2020-11-19 …
1.若P(a,b)、Q(c,d)都在直线y=mx+k上,则PQ的绝对值用a、c、m表示为().A.( 2020-12-31 …