早教吧作业答案频道 -->其他-->
已知fn(x)=(1+x)n,n∈N*.(1)若g(x)=f4(x)+2f5(x)+3f6(x),求g(x)中含x2项的系数;(2)若pn是fn(x)展开式中所有无理项的系数和,数列{an}是各项都大于1的数组成的数列,试用数学
题目详情
已知fn(x)=(1+
)n,n∈N*.
(1)若g(x)=f4(x)+2f5(x)+3f6(x),求g(x)中含x2项的系数;
(2)若pn是fn(x)展开式中所有无理项的系数和,数列{an}是各项都大于1的数组成的数列,试用数学归纳法证明:pn(a1a2…an+1)≥(1+a1)(1+a2)…(1+an).
x |
(1)若g(x)=f4(x)+2f5(x)+3f6(x),求g(x)中含x2项的系数;
(2)若pn是fn(x)展开式中所有无理项的系数和,数列{an}是各项都大于1的数组成的数列,试用数学归纳法证明:pn(a1a2…an+1)≥(1+a1)(1+a2)…(1+an).
▼优质解答
答案和解析
(1)g(x)=f4(x)+2f5(x)+3f6(x)=(1+
)4+2(1+
)5+3(1+
)6,
∴g(x)中含x2项的系数为
+2
+3
=1+10+45=56.(3分)
(2)证明:由题意,pn=2n-1.(5分)
①当n=1时,p1(a1+1)=a1+1,成立;
②假设当n=k时,pk(a1a2…ak+1)≥(1+a1)(1+a2)…(1+ak)成立,
当n=k+1时,(1+a1)(1+a2)…(1+ak)(1+ak+1)≤2k-1(a1a2…ak+1)(1+ak+1)
=2k-1(a1a2…akak+1+a1a2…ak+ak+1+1).(*)
∵ak>1,a1a2…ak(ak+1-1)≥ak+1-1,即a1a2…akak+1+1≥a1a2…ak+ak+1,
代入(*)式得(1+a1)(1+a2)…(1+ak)(1+ak+1)≤2k(a1a2…akak+1+1)成立.
综合①②可知,pn(a1a2…an+1)≥(1+a1)(1+a2)…(1+an)对任意n∈N*成立.(10分)
x |
x |
x |
∴g(x)中含x2项的系数为
C | 4 4 |
C | 4 5 |
C | 4 6 |
(2)证明:由题意,pn=2n-1.(5分)
①当n=1时,p1(a1+1)=a1+1,成立;
②假设当n=k时,pk(a1a2…ak+1)≥(1+a1)(1+a2)…(1+ak)成立,
当n=k+1时,(1+a1)(1+a2)…(1+ak)(1+ak+1)≤2k-1(a1a2…ak+1)(1+ak+1)
=2k-1(a1a2…akak+1+a1a2…ak+ak+1+1).(*)
∵ak>1,a1a2…ak(ak+1-1)≥ak+1-1,即a1a2…akak+1+1≥a1a2…ak+ak+1,
代入(*)式得(1+a1)(1+a2)…(1+ak)(1+ak+1)≤2k(a1a2…akak+1+1)成立.
综合①②可知,pn(a1a2…an+1)≥(1+a1)(1+a2)…(1+an)对任意n∈N*成立.(10分)
看了 已知fn(x)=(1+x)n...的网友还看了以下:
已知定义在实数集R上的函数f(x)满足下列条件1)f(0)=0f(1)=12)对任意的实数x,y都 2020-05-13 …
高一数学,请附过程及解析,O(∩∩)O谢谢1.若函数f(x)满足f(3x+2)=9x+8,则f(x 2020-05-13 …
哥德巴猜想 ,素数,函数 500分求一个 函数 f(x) 使得 对于 任何一个大于6的正整数 n 2020-05-14 …
1、已知函数f(x)=ax^5+bx^3+cx+5(abc都是常数),且f(5)=9,求f(-5) 2020-05-14 …
已知f(x)=log31/4-x,x属于I-5,35/9I(1)求f(x)关于点(2,1)对称的函 2020-05-23 …
求这高中函数题答案题1:设a,b属于R,且a>0,函数f(x)=x^2+ax+2b,g(x)=ax 2020-05-23 …
.函数..用等比数列解也可以.,..定义在正整数集上的的函数y=f(x)对任意a,b∈N,都有f( 2020-06-02 …
f(x)是R上的函数,若f(x+1)和f(x-1)都是奇函数,则下列判断正确的是1、f(x)是偶函 2020-06-08 …
已知函数y=f(x)是R上的偶函数,对∀x∈R都有f(x+4)=f(x)+f(2)成立.当x1,x 2020-06-26 …
高中数学抽象函数已知定义在(-1,1)上的函数f(x)满足f(1/2)=1,且对任意x,y∈(-1, 2020-12-08 …